971 resultados para Variable-order Riemann–Liouville fractional partial derivative
Resumo:
MSC 2010: 26A33, 70H25, 46F12, 34K37 Dedicated to 80-th birthday of Prof. Rudolf Gorenflo
Resumo:
2000 Mathematics Subject Classification: 35A15, 44A15, 26A33
Resumo:
This paper analyses the cosmological consequences of amodified theory of gravity whose action integral is built from a linear combination of the Ricci scalar R and a quadratic term in the covariant derivative of R. The resulting Friedmann equations are of the fifth-order in the Hubble function. These equations are solved numerically for a flat space section geometry and pressureless matter. The cosmological parameters of the higher-order model are fit using SN Ia data and X-ray gas mass fraction in galaxy clusters. The best-fit present-day t(0) values for the deceleration parameter, jerk and snap are given. The coupling constant beta of the model is not univocally determined by the data fit, but partially constrained by it. Density parameter Omega(m0) is also determined and shows weak correlation with the other parameters. The model allows for two possible future scenarios: there may be either an eternal expansion or a Rebouncing event depending on the set of values in the space of parameters. The analysis towards the past performed with the best-fit parameters shows that the model is not able to accommodate a matter-dominated stage required to the formation of structure.
Resumo:
Familial partial epilepsy with variable foci (FPEVF) joins the recently recognized group of inherited partial epilepsies. We describe an Australian family with 10 individuals with partial seizures over four generations. Detailed electroclinical studies were performed on all affected and 17 clinically unaffected family members. The striking finding was that the clinical features of the seizures and interictal electroencephalographic foci differed among family members and included frontal, temporal, occipital, and centroparietal seizures. Mean age of seizure onset was 13 years (range, 0.75-43 years). Two individuals without seizures had epileptiform abnormalities on electroencephalographic studies. Penetrance of seizures was 62%. A genome-wide search failed to demonstrate definitive linkage, but a suggestion of linkage was found on chromosome 2q with a LOD score of 2.74 at recombination fraction of zero with the marker D2S133. FPEVF differs from the other inherited partial epilepsies where partial seizures in different family members are clinically similar. The inherited nature of this new syndrome may be overlooked because of relatively low penetrance and because of the variability in age at onset and electroclinical features between affected family members.
Resumo:
A gauge theory of second order in the derivatives of the auxiliary field is constructed following Utiyama's program. A novel field strength G = partial derivative F + fAF arises besides the one of the first order treatment, F = partial derivative A - partial derivative A + fAA. The associated conserved current is obtained. It has a new feature: topological terms are determined from local invariance requirements. Podolsky Generalized Eletrodynamics is derived as a particular case in which the Lagrangian of the gauge field is L-P alpha G(2). In this application the photon mass is estimated. The SU(N) infrared regime is analysed by means of Alekseev-Arbuzov-Baikov's Lagrangian. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we show that the equation delta u/delta (z) over bar + Gu = f, where the elements involved are in generalized functions context, has a local solution in the generalized functions context.
Resumo:
Includes bibliographical references.
Études sur l'équation [partial derivative sign]p̳u/[partial derivative sign]xp̳ + a̳[delta]m̳u̳=0,
Resumo:
On t.p. p̳ and m̳ are superscript; a̳ and u̳ are subscript.
Resumo:
In this work we provide a new mathematical model for the Pennes’ bioheat equation, assuming a fractional time derivative of single order. Alternative versions of the bioheat equation are studied and discussed, to take into account the temperature-dependent variability in the tissue perfusion, and both finite and infinite speed of heat propagation. The proposed bioheat model is solved numerically using an implicit finite difference scheme that we prove to be convergent and stable. The numerical method proposed can be applied to general reaction diffusion equations, with a variable diffusion coefficient. The results obtained with the single order fractional model, are compared with the original models that use classical derivatives.
Resumo:
In this paper we study eigenfunctions and fundamental solutions for the three parameter fractional Laplace operator $\Delta_+^{(\alpha,\beta,\gamma)}:= D_{x_0^+}^{1+\alpha} +D_{y_0^+}^{1+\beta} +D_{z_0^+}^{1+\gamma},$ where $(\alpha, \beta, \gamma) \in \,]0,1]^3$, and the fractional derivatives $D_{x_0^+}^{1+\alpha}$, $D_{y_0^+}^{1+\beta}$, $D_{z_0^+}^{1+\gamma}$ are in the Riemann-Liouville sense. Applying operational techniques via two-dimensional Laplace transform we describe a complete family of eigenfunctions and fundamental solutions of the operator $\Delta_+^{(\alpha,\beta,\gamma)}$ in classes of functions admitting a summable fractional derivative. Making use of the Mittag-Leffler function, a symbolic operational form of the solutions is presented. From the obtained family of fundamental solutions we deduce a family of fundamental solutions of the fractional Dirac operator, which factorizes the fractional Laplace operator. We apply also the method of separation of variables to obtain eigenfunctions and fundamental solutions.
Resumo:
We study the existence of weighted S-asymptotically omega-periodic mild solutions for a class of abstract fractional differential equations of the form u' = partial derivative (alpha vertical bar 1)Au + f(t, u), 1 < alpha < 2, where A is a linear sectorial operator of negative type.
Resumo:
Fractional central differences and derivatives are studied in this article. These are generalisations to real orders of the ordinary positive (even and odd) integer order differences and derivatives, and also coincide with the well known Riesz potentials. The coherence of these definitions is studied by applying the definitions to functions with Fourier transformable functions. Some properties of these derivatives are presented and particular cases studied.
Resumo:
Journal of Vibration and Control, Vol. 14, Nº 9-10