Fractional pennes' bioheat equation: theoretical and numerical studies


Autoria(s): Ferrás, Luís Jorge Lima; Ford, N. J.; Morgado, M. L.; Nóbrega, J. M.; Rebelo, M. S.
Data(s)

2015

Resumo

In this work we provide a new mathematical model for the Pennes’ bioheat equation, assuming a fractional time derivative of single order. Alternative versions of the bioheat equation are studied and discussed, to take into account the temperature-dependent variability in the tissue perfusion, and both finite and infinite speed of heat propagation. The proposed bioheat model is solved numerically using an implicit finite difference scheme that we prove to be convergent and stable. The numerical method proposed can be applied to general reaction diffusion equations, with a variable diffusion coefficient. The results obtained with the single order fractional model, are compared with the original models that use classical derivatives.

Identificador

Ferras, L. L., Ford, N. J., Morgado, M. L., Nóbrega, J. A. M., & Rebelo, M. S. (2015). Fractional pennes' bioheat equation: theoretical and numerical studies. Fractional Calculus and Applied Analysis, 18(4), 1080-1106. doi: 10.1515/fca-2015-0062

1311-0454

1314-2224

http://hdl.handle.net/1822/38378

10.1515/fca-2015-0062

Idioma(s)

eng

Publicador

Springer Verlag

Relação

info:eu-repo/grantAgreement/FCT/5876-PPCDTI/134324/PT

info:eu-repo/grantAgreement/FCT/5876/147333/PT

info:eu-repo/grantAgreement/FCT/5876/147204/PT

info:eu-repo/grantAgreement/FCT/COMPETE/134324/PT

Direitos

info:eu-repo/semantics/openAccess

Palavras-Chave #Fractional differential equations #Caputo derivative #Bioheat equation #Stability #Convergence
Tipo

info:eu-repo/semantics/article