999 resultados para VIVO ACCURACY


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to evaluate ex vivo the accuracy an electronic apex locator during root canal length determination in primary molars. Methods: One calibrated examiner determined the root canal length in 15 primary molars (total=34 root canals) with different stages of root resorption. Root canal length was measured both visually, with the placement of a K-file 1 mm short of the apical foramen or the apical resorption bevel, and electronically using an electronic apex locator (Digital Signal Processing). Data were analyzed statistically using the intraclass correlation (ICC) test. Results: Comparing the actual and electronic root canal length measurements in the primary teeth showed a high correlation (ICC=0.95) Conclusions: The Digital Signal Processing apex locator is useful and accurate for apex foramen location during root canal length measurement in primary molars. (Pediatr Dent 200937:320-2) Received April 75, 2008 vertical bar Lost Revision August 21, 2008 vertical bar Revision Accepted August 22, 2008

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: To compare, in vivo, the accuracy of conventional and digital radiographic methods in determining root canal working length. Material and Methods: Twenty-five maxillary incisor or canine teeth from 22 patients were used in this study. Considering the preoperative radiographs as the baseline, a 25 K file was inserted into the root canal to the point where the Root ZX electronic apex locator indicated the APEX measurement in the screen. From this measurement, 1 mm was subtracted for positioning the file. The radiographic measurements were made using a digital sensor (Digora 1.51) or conventional type-E films, size 2, following the paralleling technique, to determine the distance of the file tip and the radiographic apex. Results: The Student "t" test indicated mean distances of 1.11 mm to conventional and 1.20 mm for the digital method and indicated a significant statistical difference (p<0.05). Conclusions: The conventional radiographic method was found to be superior to the digital one in determining the working length of the root canal.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objectives. The objectives of this study were to assess the accuracy of working length determination using 3 electronic apex locators and direct digital radiography and to compare the results with those obtained using the visual method (control measurement). Study design. Twenty extracted human maxillary premolars were selected: 17 two-rooted and 3 single-rooted (total of 37 canals). Working length was measured using electronic apex locators Elements Diagnostic, Root ZX, and Just II. Subsequently, teeth were positioned in the alveolar bone of a dry skull and submitted to direct digital radiography. A variation of +/- 1 mm was considered as acceptable. Results were analyzed using the Wilcoxon and the chi(2) tests. Results. Results presented an accuracy of 94.6% for Elements Diagnostic, 91.9% for Root ZX, 73.0% for Just II, and 64.9% for direct digital radiography when considering the margin of +/- 1 mm in relation to the control measurement. Comparisons with the actual control measurements resulted in accuracy results of 13.51%, 13.51%, 10.10%, and 2.70%, respectively. Conclusions. Root ZX and Elements Diagnostic are more accurate in determining working length when compared with Just II and Schick direct digital radiography. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2011;111:e44-e49)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introducción: En la práctica neuroquirurgica el uso de tornillos pediculares torácicos ha venido en aumento en el tratamiento de diferentes patologías de la espinales. Desde la descripción original, se confirma la adecuada canalización del trayecto mediante el uso del palpador, sin embargo la validez y seguridad de dicho instrumento es limitada y existe riesgo de complicaciones complejas. En este estudio se comprueba la seguridad y validez del uso del palpador para diagnosticar la integridad del trayecto pedicular torácico. Metodología: Se canalizaron pedículos torácicos en especímenes cadavéricos los cuales de manera aleatoria se clasificaron como normales (íntegros) o anormales (violados). Posteriormente cuatro cirujanos de columna, con diferentes grados de experticia, evaluaron el trayecto pedicular. Se realizaron estudios de concordancia obteniendo coeficiente Kappa, porcentaje total de precisión, sensibilidad, especificidad, VPP y VPN y el área bajo la curva ROC para determinar la precisión de la prueba. Resultados: La precisión y validez en el diagnostico del trayecto pedicular y localización del sitio de violación tienen relación directa con la experiencia y entrenamiento del cirujano, el evaluador con mayor experiencia obtuvo los mejores resultados. El uso del palpador tiene una buena precisión, área bajo la curva ROC 0.86, para el diagnostico de las lesiones pediculares. Discusión: La evaluación precisa del trayecto pedicular, presencia o ausencia de una violación, es dependiente del grado de experiencia del cirujano, adicionalmente la precisión diagnostica de la violación varía según la localización de esta.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aim To evaluate ex vivo the accuracy of two electronic apex locators during root canal length determination in primary incisor and molar teeth with different stages of physiological root resorption. Methodology One calibrated examiner determined the root canal length in 17 primary incisors and 16 primary molars (total of 57 root canals) with different stages of root resorption based on the actual canal length and using two electronic apex locators. Root canal length was measured both visually, with the placement of a K-file 1 mm short of the apical foramen or the apical resorption bevel, and electronically using two electronic apex locators (Root ZX II - J. Morita Corp. and Mini Apex Locator - SybronEndo) according to the manufacturers` instructions. Data were analysed statistically using the intraclass correlation (ICC) test. Results Comparison of the actual root canal length and the electronic root canal length measurements revealed high correlation (ICC = 0.99), regardless of the tooth type (single-rooted and multi-rooted teeth) or the presence/absence of physiological root resorption. Conclusions Root ZX II and Mini Apex Locator proved useful and accurate for apex foramen location during root canal length measurement in primary incisors and molars.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

P>Aim To evaluate ex vivo the accuracy of the iPex multi-frequency electronic apex locator (NSK Ltd, Tokyo, Japan) for working length determination in primary molar teeth. Methodology One calibrated examiner determined the working length in 20 primary molar teeth (total of 33 root canals). Working length was measured both visually, with the placement of a K-file 1 mm short of the apical foramen or the most coronal limit of root resorption, and electronically using the electronic apex locator iPex, according to the manufacturers` instructions. Data were analysed statistically using the intraclass correlation (ICC) test. Results Comparison of the actual and the electronic measurements revealed high correlation (ICC = 0.99) between the methods, regardless of the presence or absence of physiological root resorption. Conclusions In this laboratory study, the iPex accurately identified the apical foramen or the apical opening location for working length measurement in primary molar teeth.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this study was to assess, in vivo, the accuracy of the NovApex (R) electronic foramen locator in determining working length (WL) in vital and necrotic posterior teeth. The NovApex (R) was used in 144 canals: 35 teeth with vital pulps (68 canals) and 42 teeth with necrotic pulps (76 canals). WL was measured with the NovApex (R) locator and confirmed using the radiographic method. Differences between electronic and radiographic measurements ranging between 0.0 and 0.4 millimeters were classified as acceptable; differences equal to or greater than 0.5 millimeter were considered unacceptable. Pearson's chi-square test was used to assess the influence of pulp condition on the accuracy of NovApex (R) (alpha = 0.05). Regardless of pulp condition, differences between electronic and radiographic WL measurements were acceptable in 73.61% of the canals. No statistically significant differences in accuracy were observed when comparing vital and necrotic canals (p > 0.05). There were 38 unacceptable measurements. In none of these cases was the file tip located beyond the radiographic apex; in 32, it was located short of the NovApex (R) measurement. Pulp condition had no significant effect on the accuracy of NovApex (R).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective: The aim of this study was to evaluate, ex vivo, the precision of five electronic root canal length measurement devices (ERCLMDs) with different operating systems: the Root ZX, Mini Apex Locator, Propex II, iPex, and RomiApex A-15, and the possible influence of the positioning of the instrument tips short of the apical foramen. Material and Methods: Forty-two mandibular bicuspids had their real canal lengths (RL) previously determined. Electronic measurements were performed 1.0 mm short of the apical foramen (-1.0), followed by measurements at the apical foramen (0.0). The data resulting from the comparison of the ERCLMD measurements and the RL were evaluated by the Wilcoxon and Friedman tests at a significance level of 5%. Results: Considering the measurements performed at 0.0 and -1.0, the precision rates for the ERCLMDs were: 73.5% and 47.1% (Root ZX), 73.5% and 55.9% (Mini Apex Locator), 67.6% and 41.1% (Propex II), 61.7% and 44.1% (iPex), and 79.4% and 44.1% (RomiApex A-15), respectively, considering ±0.5 mm of tolerance. Regarding the mean discrepancies, no differences were observed at 0.0; however, in the measurements at -1.0, the iPex, a multi-frequency ERCLMD, had significantly more discrepant readings short of the apical foramen than the other devices, except for the Propex II, which had intermediate results. When the ERCLMDs measurements at -1.0 were compared with those at 0.0, the Propex II, iPex and RomiApex A-15 presented significantly higher discrepancies in their readings. Conclusions: Under the conditions of the present study, all the ERCLMDs provided acceptable measurements at the 0.0 position. However, at the -1.0 position, the ERCLMDs had a lower precision, with statistically significant differences for the Propex II, iPex, and RomiApex A-15.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this study was to evaluate in vivo the clinical applicability of two electronic apex locators (EALs) - Apex (Septodont) and iPex (NSK) - in different groups of human teeth by using radiography. The working lengths (WLs) of 100 root canals were determined electronically. The EAL to be used first was chosen randomly and a K-file was inserted into the root canal until the EAL display indicated the location of the apical constriction (0 mm). The K-file was fixed to the tooth and a periapical radiograph was taken using a radiographic film holder. The K-file was removed and the WL was measured. The same procedure was repeated using the other EAL. Radiographs were examined with the aid of a light-box with lens of ×4 magnification by two blinded experienced endodontists. The distance between the file tip and the root apex was recorded as follows: (A) +1 to 0 mm, (B) -0.1 to 0.5 mm, (C) -0.6 to 1 mm, (D) -1.1 to 1.5 mm, and (E) -1.6 mm or greater. For statistical purposes, these scores were divided into 2 subgroups according to the radiographic apex: acceptable (B, C, and D) and non-acceptable (A and E). Statistically significant differences were not found between the results of Apex and iPex in terms of acceptable and non-acceptable measurements (p>0.05) or in terms of the distance recorded from file tip and the radiographic apex (p>0.05). Apex and iPex EALs provided reliable measurements for WL determination for endodontic therapy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVES: The goal of the present study was to compare the accuracy of in vivo tissue characterization obtained by intravascular ultrasound (IVUS) radiofrequency (RF) data analysis, known as Virtual Histology (VH), to the in vitro histopathology of coronary atherosclerotic plaques obtained by directional coronary atherectomy. BACKGROUND: Vulnerable plaque leading to acute coronary syndrome (ACS) has been associated with specific plaque composition, and its characterization is an important clinical focus. METHODS: Virtual histology IVUS images were performed before and after a single debulking cut using directional coronary atherectomy. Debulking region of in vivo histology image was predicted by comparing pre- and post-debulking VH images. Analysis of VH images with the corresponding tissue cross section was performed. RESULTS: Fifteen stable angina pectoris (AP) and 15 ACS patients were enrolled. The results of IVUS RF data analysis correlated well with histopathologic examination (predictive accuracy from all patients data: 87.1% for fibrous, 87.1% for fibro-fatty, 88.3% for necrotic core, and 96.5% for dense calcium regions, respectively). In addition, the frequency of necrotic core was significantly higher in the ACS group than in the stable AP group (in vitro histopathology: 22.6% vs. 12.6%, p = 0.02; in vivo virtual histology: 24.5% vs. 10.4%, p = 0.002). CONCLUSIONS: Correlation of in vivo IVUS RF data analysis with histopathology shows a high accuracy. In vivo IVUS RF data analysis is a useful modality for the classification of different types of coronary components, and may play an important role in the detection of vulnerable plaque.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bioelectrical impedance analysis (BIA) offers the potential for a simple, portable and relatively inexpensive technique for the in vivo measurement of total body water (TBW). The potential of BIA as a technique of body composition analysis is even greater when one considers that body water can be used as a surrogate measure of lean body mass. However, BIA has not found universal acceptance even with the introduction of multi-frequency BIA (MFBIA) which, potentially, may improve the predictive accuracy of the measurement. There are a number of reasons for this lack of acceptance, although perhaps the major reason is that no single algorithm has been developed which can be applied to all subject groups. This may be due, in part, to the commonly used wrist-to-ankle protocol which is not indicated by the basic theory of bioimpedance, where the body is considered as five interconnecting cylinders. Several workers have suggested the use of segmental BIA measurements to provide a protocol more in keeping with basic theory. However, there are other difficulties associated with the application of BIA, such as effects of hydration and ion status, posture and fluid distribution. A further putative advantage of MFBIA is the independent assessment not only of TBW but also of the extracellular fluid volume (ECW), hence heralding the possibility of,being able to assess the fluid distribution between these compartments. Results of studies in this area have been, to date, mixed. Whereas strong relationships of impedance values at low frequencies with ECW, and at high frequencies with TBW, have been reported, changes in impedance are not always well correlated with changes in the size of the fluid compartments (assessed by alternative and more direct means) in pathological conditions. Furthermore, the theoretical advantages of Cole-Cole modelling over selected frequency prediction have not always been apparent. This review will consider the principles, methodology and applications of BIA. The principles and methodology will,be considered in relation to the basic theory of BIA and difficulties experienced in its application. The relative merits of single and multiple frequency BIA will be addressed, with particular attention to the latter's role in the assessment of compartmental fluid volumes. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective. The aim of this study was to evaluate the precision of working length determination of 3 electronic apex locators (EALs): Root ZX, RomiApex D-30, and Ipex at 0.0 mm, at the apical foramen (AF), and at 1.0 mm short of the AF. Methodology. Thirty-eight mandibular premolars had their real lengths previously determined. Electronic measurements were determined at 1.0 mm, followed by measurements at 0.0 mm, performed in triplicate. Results. Precision of devices at 1.0 mm and 0.0 mm were: 94.7% and 97.4%, respectively (Root ZX); 78.9% and 97.4% (RomiApex D-30); and 76.3% and 97.4% (Ipex). Although no statistical differences were observed between the EALs at 0.0, at 1.0 mm Root ZX performed significantly better than the others. Conclusion. The EALs had acceptable precision when measuring the working length at the AF. However, when used at levels short of the AF, only Root ZX did not suffer a significant negative effect on precision. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;110:e57-e61)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: The aim of this study was to compare the influence of preflaring on the accuracy of 4 electronic apex locators (EALs): Root ZX, Elements Diagnostic Unit and Apex Locator, Mini Apex Locator, and Apex DSP. Methods: Forty extracted teeth were preflared by using S1 and SX ProTaper instruments. The working length was established by reducing 1 mm from the total length (TL). The ability of the EALs to detect precise (-1 mm from TL) and acceptable (-1+/-0.5 mm from TL) measurements in unflared and preflared canals was determined. Results: The precise and acceptable (P/A) readings in unflared canals for Root ZX, Elements Diagnostic Unit and Apex Locator, Mini Apex and Apex DSP were 50%/97.5%, 47.5%/95%, 50%/97.5%, and 45%/67.5%, respectively. For preflared canals, the readings were 75%/97.5%, 55%/95%, 75%/97.5%, and 60%/87.5%, respectively. For precise criteria, the preflared procedure increased the percentage of accurate electronic readings for the Root ZX and the Mini Apex Locator (P < .05). For acceptable criteria, no differences were found among Root ZX, Elements Diagnostic Unit and Apex Locator, and Mini Apex Locator (P > .05). Fisher test indicated the lower accuracy for Apex DSP (P < .05). Conclusions: The Root ZX and the Mini Apex Locator devices increased significantly the precision to determine the real working length after the preflaring procedure. All the EALs showed an acceptable determination of the working length between the ranges of+/-0.5mm except for the Apex DSP device, which had the lowest accuracy. (J Endod 2009;35:1300-1302)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Surgery remains the treatment of choice for localized renal neoplasms. While radical nephrectomy was long considered the gold standard, partial nephrectomy has equivalent oncological results for small tumors. The role of negative surgical margins continues to be debated. Intraoperative frozen section analysis is expensive and time-consuming. We assessed the feasibility of intraoperative ex vivo ultrasound of resection margins in patients undergoing partial nephrectomy and its correlation with margin status on definitive pathological evaluation.Materials and Methods: A study was done at 2 institutions from February 2008 to March 2011. Patients undergoing partial nephrectomy for T1-T2 renal tumors were included in analysis. Partial nephrectomy was done by a standardized minimal healthy tissue margin technique. After resection the specimen was kept in saline and tumor margin status was immediately determined by ex vivo ultrasound. Sequential images were obtained to evaluate the whole tumor pseudocapsule. Results were compared with margin status on definitive pathological evaluation.Results: A total of 19 men and 14 women with a mean +/- SD age of 62 +/- 11 years were included in analysis. Intraoperative ex vivo ultrasound revealed negative surgical margins in 30 cases and positive margins in 2 while it could not be done in 1. Final pathological results revealed negative margins in all except 1 case. Ultrasound sensitivity and specificity were 100% and 97%, respectively. Median ultrasound duration was 1 minute. Mean tumor and margin size was 3.6 +/- 2.2 cm and 1.5 +/- 0.7 mm, respectively.Conclusions: Intraoperative ex vivo ultrasound of resection margins in patients undergoing partial nephrectomy is feasible and efficient. Large sample studies are needed to confirm its promising accuracy to determine margin status.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: Gamma Knife surgery (GKS) is a non-invasive neurosurgical stereotactic procedure, increasingly used as an alternative to open functional procedures. This includes targeting of the ventro-intermediate nucleus of the thalamus (e.g. Vim) for tremor. We currently perform an indirect targeting, as the Vim is not visible on current 3Tesla MRI acquisitions. Our objective was to enhance anatomic imaging (aiming at refining the precision of anatomic target selection by direct visualisation) in patients treated for tremor with Vim GKS, by using high field 7T MRI. MATERIALS AND METHODSH: Five young healthy subjects were scanned on 3 (T1-w and diffusion tensor imaging) and 7T (high-resolution susceptibility weighted images (SWI)) MRI in Lausanne. All images were further integrated for the first time into the Gamma Plan Software(®) (Elekta Instruments, AB, Sweden) and co-registered (with T1 was a reference). A simulation of targeting of the Vim was done using various methods on the 3T images. Furthermore, a correlation with the position of the found target with the 7T SWI was performed. The atlas of Morel et al. (Zurich, CH) was used to confirm the findings on a detailed analysis inside/outside the Gamma Plan. RESULTS: The use of SWI provided us with a superior resolution and an improved image contrast within the basal ganglia. This allowed visualization and direct delineation of some subgroups of thalamic nuclei in vivo, including the Vim. The position of the target, as assessed on 3T, perfectly matched with the supposed one of the Vim on the SWI. Furthermore, a 3-dimensional model of the Vim-target area was created on the basis of the obtained images. CONCLUSION: This is the first report of the integration of SWI high field MRI into the LGP, aiming at the improvement of targeting validation of the Vim in tremor. The anatomical correlation between the direct visualization on 7T and the current targeting methods on 3T (e.g. quadrilatere of Guyot, histological atlases) seems to show a very good anatomical matching. Further studies are needed to validate this technique, both by improving the accuracy of the targeting of the Vim (potentially also other thalamic nuclei) and to perform clinical assessment.