999 resultados para VAR models
Resumo:
This paper proposes a method to conduct inference in panel VAR models with cross unit interdependencies and time variations in the coefficients. The approach can be used to obtain multi-unit forecasts and leading indicators and to conduct policy analysis in a multiunit setups. The framework of analysis is Bayesian and MCMC methods are used to estimate the posterior distribution of the features of interest. The model is reparametrized to resemble an observable index model and specification searches are discussed. As an example, we construct leading indicators for inflation and GDP growth in the Euro area using G-7 information.
Resumo:
We examine the effects of extracting monetary policy disturbances with semi-structural and structural VARs, using data generated bya limited participation model under partial accommodative and feedback rules. We find that, in general, misspecification is substantial: short run coefficients often have wrong signs; impulse responses and variance decompositions give misleadingrepresentations of the dynamics. Explanations for the results and suggestions for macroeconomic practice are provided.
Resumo:
This paper describes a methodology to estimate the coefficients, to test specification hypothesesand to conduct policy exercises in multi-country VAR models with cross unit interdependencies, unit specific dynamics and time variations in the coefficients. The framework of analysis is Bayesian: a prior flexibly reduces the dimensionality of the model and puts structure on the time variations; MCMC methods are used to obtain posterior distributions; and marginal likelihoods to check the fit of various specifications. Impulse responses and conditional forecasts are obtained with the output of MCMC routine. The transmission of certain shocks across countries is analyzed.
Resumo:
Statistical tests in vector autoregressive (VAR) models are typically based on large-sample approximations, involving the use of asymptotic distributions or bootstrap techniques. After documenting that such methods can be very misleading even with fairly large samples, especially when the number of lags or the number of equations is not small, we propose a general simulation-based technique that allows one to control completely the level of tests in parametric VAR models. In particular, we show that maximized Monte Carlo tests [Dufour (2002)] can provide provably exact tests for such models, whether they are stationary or integrated. Applications to order selection and causality testing are considered as special cases. The technique developed is applied to quarterly and monthly VAR models of the U.S. economy, comprising income, money, interest rates and prices, over the period 1965-1996.
Resumo:
Using vector autoregressive (VAR) models and Monte-Carlo simulation methods we investigate the potential gains for forecasting accuracy and estimation uncertainty of two commonly used restrictions arising from economic relationships. The Örst reduces parameter space by imposing long-term restrictions on the behavior of economic variables as discussed by the literature on cointegration, and the second reduces parameter space by imposing short-term restrictions as discussed by the literature on serial-correlation common features (SCCF). Our simulations cover three important issues on model building, estimation, and forecasting. First, we examine the performance of standard and modiÖed information criteria in choosing lag length for cointegrated VARs with SCCF restrictions. Second, we provide a comparison of forecasting accuracy of Ötted VARs when only cointegration restrictions are imposed and when cointegration and SCCF restrictions are jointly imposed. Third, we propose a new estimation algorithm where short- and long-term restrictions interact to estimate the cointegrating and the cofeature spaces respectively. We have three basic results. First, ignoring SCCF restrictions has a high cost in terms of model selection, because standard information criteria chooses too frequently inconsistent models, with too small a lag length. Criteria selecting lag and rank simultaneously have a superior performance in this case. Second, this translates into a superior forecasting performance of the restricted VECM over the VECM, with important improvements in forecasting accuracy ñreaching more than 100% in extreme cases. Third, the new algorithm proposed here fares very well in terms of parameter estimation, even when we consider the estimation of long-term parameters, opening up the discussion of joint estimation of short- and long-term parameters in VAR models.
Resumo:
We study the joint determination of the lag length, the dimension of the cointegrating space and the rank of the matrix of short-run parameters of a vector autoregressive (VAR) model using model selection criteria. We consider model selection criteria which have data-dependent penalties for a lack of parsimony, as well as the traditional ones. We suggest a new procedure which is a hybrid of traditional criteria and criteria with data-dependant penalties. In order to compute the fit of each model, we propose an iterative procedure to compute the maximum likelihood estimates of parameters of a VAR model with short-run and long-run restrictions. Our Monte Carlo simulations measure the improvements in forecasting accuracy that can arise from the joint determination of lag-length and rank, relative to the commonly used procedure of selecting the lag-length only and then testing for cointegration.
Resumo:
We study the joint determination of the lag length, the dimension of the cointegrating space and the rank of the matrix of short-run parameters of a vector autoregressive (VAR) model using model selection criteria. We consider model selection criteria which have data-dependent penalties as well as the traditional ones. We suggest a new two-step model selection procedure which is a hybrid of traditional criteria and criteria with data-dependant penalties and we prove its consistency. Our Monte Carlo simulations measure the improvements in forecasting accuracy that can arise from the joint determination of lag-length and rank using our proposed procedure, relative to an unrestricted VAR or a cointegrated VAR estimated by the commonly used procedure of selecting the lag-length only and then testing for cointegration. Two empirical applications forecasting Brazilian inflation and U.S. macroeconomic aggregates growth rates respectively show the usefulness of the model-selection strategy proposed here. The gains in different measures of forecasting accuracy are substantial, especially for short horizons.
Resumo:
We study the joint determination of the lag length, the dimension of the cointegrating space and the rank of the matrix of short-run parameters of a vector autoregressive (VAR) model using model selection criteria. We consider model selection criteria which have data-dependent penalties as well as the traditional ones. We suggest a new two-step model selection procedure which is a hybrid of traditional criteria and criteria with data-dependant penalties and we prove its consistency. Our Monte Carlo simulations measure the improvements in forecasting accuracy that can arise from the joint determination of lag-length and rank using our proposed procedure, relative to an unrestricted VAR or a cointegrated VAR estimated by the commonly used procedure of selecting the lag-length only and then testing for cointegration. Two empirical applications forecasting Brazilian in ation and U.S. macroeconomic aggregates growth rates respectively show the usefulness of the model-selection strategy proposed here. The gains in di¤erent measures of forecasting accuracy are substantial, especially for short horizons.
Resumo:
We study the joint determination of the lag length, the dimension of the cointegrating space and the rank of the matrix of short-run parameters of a vector autoregressive (VAR) model using model selection criteria. We suggest a new two-step model selection procedure which is a hybrid of traditional criteria and criteria with data-dependant penalties and we prove its consistency. A Monte Carlo study explores the finite sample performance of this procedure and evaluates the forecasting accuracy of models selected by this procedure. Two empirical applications confirm the usefulness of the model selection procedure proposed here for forecasting.
Resumo:
Negli ultimi anni i modelli VAR sono diventati il principale strumento econometrico per verificare se può esistere una relazione tra le variabili e per valutare gli effetti delle politiche economiche. Questa tesi studia tre diversi approcci di identificazione a partire dai modelli VAR in forma ridotta (tra cui periodo di campionamento, set di variabili endogene, termini deterministici). Usiamo nel caso di modelli VAR il test di Causalità di Granger per verificare la capacità di una variabile di prevedere un altra, nel caso di cointegrazione usiamo modelli VECM per stimare congiuntamente i coefficienti di lungo periodo ed i coefficienti di breve periodo e nel caso di piccoli set di dati e problemi di overfitting usiamo modelli VAR bayesiani con funzioni di risposta di impulso e decomposizione della varianza, per analizzare l'effetto degli shock sulle variabili macroeconomiche. A tale scopo, gli studi empirici sono effettuati utilizzando serie storiche di dati specifici e formulando diverse ipotesi. Sono stati utilizzati tre modelli VAR: in primis per studiare le decisioni di politica monetaria e discriminare tra le varie teorie post-keynesiane sulla politica monetaria ed in particolare sulla cosiddetta "regola di solvibilità" (Brancaccio e Fontana 2013, 2015) e regola del GDP nominale in Area Euro (paper 1); secondo per estendere l'evidenza dell'ipotesi di endogeneità della moneta valutando gli effetti della cartolarizzazione delle banche sul meccanismo di trasmissione della politica monetaria negli Stati Uniti (paper 2); terzo per valutare gli effetti dell'invecchiamento sulla spesa sanitaria in Italia in termini di implicazioni di politiche economiche (paper 3). La tesi è introdotta dal capitolo 1 in cui si delinea il contesto, la motivazione e lo scopo di questa ricerca, mentre la struttura e la sintesi, così come i principali risultati, sono descritti nei rimanenti capitoli. Nel capitolo 2 sono esaminati, utilizzando un modello VAR in differenze prime con dati trimestrali della zona Euro, se le decisioni in materia di politica monetaria possono essere interpretate in termini di una "regola di politica monetaria", con specifico riferimento alla cosiddetta "nominal GDP targeting rule" (McCallum 1988 Hall e Mankiw 1994; Woodford 2012). I risultati evidenziano una relazione causale che va dallo scostamento tra i tassi di crescita del PIL nominale e PIL obiettivo alle variazioni dei tassi di interesse di mercato a tre mesi. La stessa analisi non sembra confermare l'esistenza di una relazione causale significativa inversa dalla variazione del tasso di interesse di mercato allo scostamento tra i tassi di crescita del PIL nominale e PIL obiettivo. Risultati simili sono stati ottenuti sostituendo il tasso di interesse di mercato con il tasso di interesse di rifinanziamento della BCE. Questa conferma di una sola delle due direzioni di causalità non supporta un'interpretazione della politica monetaria basata sulla nominal GDP targeting rule e dà adito a dubbi in termini più generali per l'applicabilità della regola di Taylor e tutte le regole convenzionali della politica monetaria per il caso in questione. I risultati appaiono invece essere più in linea con altri approcci possibili, come quelli basati su alcune analisi post-keynesiane e marxiste della teoria monetaria e più in particolare la cosiddetta "regola di solvibilità" (Brancaccio e Fontana 2013, 2015). Queste linee di ricerca contestano la tesi semplicistica che l'ambito della politica monetaria consiste nella stabilizzazione dell'inflazione, del PIL reale o del reddito nominale intorno ad un livello "naturale equilibrio". Piuttosto, essi suggeriscono che le banche centrali in realtà seguono uno scopo più complesso, che è il regolamento del sistema finanziario, con particolare riferimento ai rapporti tra creditori e debitori e la relativa solvibilità delle unità economiche. Il capitolo 3 analizza l’offerta di prestiti considerando l’endogeneità della moneta derivante dall'attività di cartolarizzazione delle banche nel corso del periodo 1999-2012. Anche se gran parte della letteratura indaga sulla endogenità dell'offerta di moneta, questo approccio è stato adottato raramente per indagare la endogeneità della moneta nel breve e lungo termine con uno studio degli Stati Uniti durante le due crisi principali: scoppio della bolla dot-com (1998-1999) e la crisi dei mutui sub-prime (2008-2009). In particolare, si considerano gli effetti dell'innovazione finanziaria sul canale dei prestiti utilizzando la serie dei prestiti aggiustata per la cartolarizzazione al fine di verificare se il sistema bancario americano è stimolato a ricercare fonti più economiche di finanziamento come la cartolarizzazione, in caso di politica monetaria restrittiva (Altunbas et al., 2009). L'analisi si basa sull'aggregato monetario M1 ed M2. Utilizzando modelli VECM, esaminiamo una relazione di lungo periodo tra le variabili in livello e valutiamo gli effetti dell’offerta di moneta analizzando quanto la politica monetaria influisce sulle deviazioni di breve periodo dalla relazione di lungo periodo. I risultati mostrano che la cartolarizzazione influenza l'impatto dei prestiti su M1 ed M2. Ciò implica che l'offerta di moneta è endogena confermando l'approccio strutturalista ed evidenziando che gli agenti economici sono motivati ad aumentare la cartolarizzazione per una preventiva copertura contro shock di politica monetaria. Il capitolo 4 indaga il rapporto tra spesa pro capite sanitaria, PIL pro capite, indice di vecchiaia ed aspettativa di vita in Italia nel periodo 1990-2013, utilizzando i modelli VAR bayesiani e dati annuali estratti dalla banca dati OCSE ed Eurostat. Le funzioni di risposta d'impulso e la scomposizione della varianza evidenziano una relazione positiva: dal PIL pro capite alla spesa pro capite sanitaria, dalla speranza di vita alla spesa sanitaria, e dall'indice di invecchiamento alla spesa pro capite sanitaria. L'impatto dell'invecchiamento sulla spesa sanitaria è più significativo rispetto alle altre variabili. Nel complesso, i nostri risultati suggeriscono che le disabilità strettamente connesse all'invecchiamento possono essere il driver principale della spesa sanitaria nel breve-medio periodo. Una buona gestione della sanità contribuisce a migliorare il benessere del paziente, senza aumentare la spesa sanitaria totale. Tuttavia, le politiche che migliorano lo stato di salute delle persone anziane potrebbe essere necessarie per una più bassa domanda pro capite dei servizi sanitari e sociali.
Resumo:
Este estudio empírico compara la capacidad de los modelos Vectores auto-regresivos (VAR) sin restricciones para predecir la estructura temporal de las tasas de interés en Colombia -- Se comparan modelos VAR simples con modelos VAR aumentados con factores macroeconómicos y financieros colombianos y estadounidenses -- Encontramos que la inclusión de la información de los precios del petróleo, el riesgo de crédito de Colombia y un indicador internacional de la aversión al riesgo mejora la capacidad de predicción fuera de la muestra de los modelos VAR sin restricciones para vencimientos de corto plazo con frecuencia mensual -- Para vencimientos de mediano y largo plazo los modelos sin variables macroeconómicas presentan mejores pronósticos sugiriendo que las curvas de rendimiento de mediano y largo plazo ya incluyen toda la información significativa para pronosticarlos -- Este hallazgo tiene implicaciones importantes para los administradores de portafolios, participantes del mercado y responsables de las políticas
Resumo:
Linear models reach their limitations in applications with nonlinearities in the data. In this paper new empirical evidence is provided on the relative Euro inflation forecasting performance of linear and non-linear models. The well established and widely used univariate ARIMA and multivariate VAR models are used as linear forecasting models whereas neural networks (NN) are used as non-linear forecasting models. It is endeavoured to keep the level of subjectivity in the NN building process to a minimum in an attempt to exploit the full potentials of the NN. It is also investigated whether the historically poor performance of the theoretically superior measure of the monetary services flow, Divisia, relative to the traditional Simple Sum measure could be attributed to a certain extent to the evaluation of these indices within a linear framework. Results obtained suggest that non-linear models provide better within-sample and out-of-sample forecasts and linear models are simply a subset of them. The Divisia index also outperforms the Simple Sum index when evaluated in a non-linear framework. © 2005 Taylor & Francis Group Ltd.
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA – School of Business and Economics
Resumo:
Maybe because of the inconclusive nature of the results on the impact of public capital on output at the regional level, the issue of the possible existence of the regional spillovers from public capital formation has received little attention. The objective of this paper is to provide evidence on the possible existence of such spillovers. We consider the case of Spain and its seventeen regions. Our methodological approach consists in estimating an aggregate VAR model for Spain as well as seventeen region-specific VAR models in which both capital installed in the region and capital installed outside the region are allowed to play a role in enhancing regional output. The estimation results can be summarized as follows. The aggregate effects of public capital formation in Spain are important. They cannot, however, be captured in their entirety by the direct effects in each region from public capital installed in the region itself. When for each region both the capital installed in the region and the capital installed outside the region are considered the total disaggregated effect from the seventeen regional models are very much in line with the aggregate results. Furthermore, the aggregate effect seems to be due in almost equal parts to the direct and spillover effects of public capital formation. Ultimately, this paper establishes the relevance of both capital installed in each region and spillover effects in the understanding of the regional decomposition of the aggregate effects of public capital formation. In doing so it opens the door to some tantalizing and potentially highly charged research issues in terms of the determination of the optimal location of public investment projects.
Resumo:
We study the asymmetric and dynamic dependence between financial assets and demonstrate, from the perspective of risk management, the economic significance of dynamic copula models. First, we construct stock and currency portfolios sorted on different characteristics (ex ante beta, coskewness, cokurtosis and order flows), and find substantial evidence of dynamic evolution between the high beta (respectively, coskewness, cokurtosis and order flow) portfolios and the low beta (coskewness, cokurtosis and order flow) portfolios. Second, using three different dependence measures, we show the presence of asymmetric dependence between these characteristic-sorted portfolios. Third, we use a dynamic copula framework based on Creal et al. (2013) and Patton (2012) to forecast the portfolio Value-at-Risk of long-short (high minus low) equity and FX portfolios. We use several widely used univariate and multivariate VaR models for the purpose of comparison. Backtesting our methodology, we find that the asymmetric dynamic copula models provide more accurate forecasts, in general, and, in particular, perform much better during the recent financial crises, indicating the economic significance of incorporating dynamic and asymmetric dependence in risk management.