955 resultados para Unsolvability (Mathematical logic)


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bibliography: p. 120-123.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bertrand Russell (1872 1970) introduced the English-speaking philosophical world to modern, mathematical logic and foundational study of mathematics. The present study concerns the conception of logic that underlies his early logicist philosophy of mathematics, formulated in The Principles of Mathematics (1903). In 1967, Jean van Heijenoort published a paper, Logic as Language and Logic as Calculus, in which he argued that the early development of modern logic (roughly the period 1879 1930) can be understood, when considered in the light of a distinction between two essentially different perspectives on logic. According to the view of logic as language, logic constitutes the general framework for all rational discourse, or meaningful use of language, whereas the conception of logic as calculus regards logic more as a symbolism which is subject to reinterpretation. The calculus-view paves the way for systematic metatheory, where logic itself becomes a subject of mathematical study (model-theory). Several scholars have interpreted Russell s views on logic with the help of the interpretative tool introduced by van Heijenoort,. They have commonly argued that Russell s is a clear-cut case of the view of logic as language. In the present study a detailed reconstruction of the view and its implications is provided, and it is argued that the interpretation is seriously misleading as to what he really thought about logic. I argue that Russell s conception is best understood by setting it in its proper philosophical context. This is constituted by Immanuel Kant s theory of mathematics. Kant had argued that purely conceptual thought basically, the logical forms recognised in Aristotelian logic cannot capture the content of mathematical judgments and reasonings. Mathematical cognition is not grounded in logic but in space and time as the pure forms of intuition. As against this view, Russell argued that once logic is developed into a proper tool which can be applied to mathematical theories, Kant s views turn out to be completely wrong. In the present work the view is defended that Russell s logicist philosophy of mathematics, or the view that mathematics is really only logic, is based on what I term the Bolzanian account of logic . According to this conception, (i) the distinction between form and content is not explanatory in logic; (ii) the propositions of logic have genuine content; (iii) this content is conferred upon them by special entities, logical constants . The Bolzanian account, it is argued, is both historically important and throws genuine light on Russell s conception of logic.

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper proposes a novel application of fuzzy logic to web data mining for two basic problems of a website: popularity and satisfaction. Popularity means that people will visit the website while satisfaction refers to the usefulness of the site. We will illustrate that the popularity of a website is a fuzzy logic problem. It is an important characteristic of a website in order to survive in Internet commerce. The satisfaction of a website is also a fuzzy logic problem that represents the degree of success in the application of information technology to the business. We propose a framework of fuzzy logic for the representation of these two problems based on web data mining techniques to fuzzify the attributes of a website.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One of the most fundamental questions in the philosophy of mathematics concerns the relation between truth and formal proof. The position according to which the two concepts are the same is called deflationism, and the opposing viewpoint substantialism. In an important result of mathematical logic, Kurt Gödel proved in his first incompleteness theorem that all consistent formal systems containing arithmetic include sentences that can neither be proved nor disproved within that system. However, such undecidable Gödel sentences can be established to be true once we expand the formal system with Alfred Tarski s semantical theory of truth, as shown by Stewart Shapiro and Jeffrey Ketland in their semantical arguments for the substantiality of truth. According to them, in Gödel sentences we have an explicit case of true but unprovable sentences, and hence deflationism is refuted. Against that, Neil Tennant has shown that instead of Tarskian truth we can expand the formal system with a soundness principle, according to which all provable sentences are assertable, and the assertability of Gödel sentences follows. This way, the relevant question is not whether we can establish the truth of Gödel sentences, but whether Tarskian truth is a more plausible expansion than a soundness principle. In this work I will argue that this problem is best approached once we think of mathematics as the full human phenomenon, and not just consisting of formal systems. When pre-formal mathematical thinking is included in our account, we see that Tarskian truth is in fact not an expansion at all. I claim that what proof is to formal mathematics, truth is to pre-formal thinking, and the Tarskian account of semantical truth mirrors this relation accurately. However, the introduction of pre-formal mathematics is vulnerable to the deflationist counterargument that while existing in practice, pre-formal thinking could still be philosophically superfluous if it does not refer to anything objective. Against this, I argue that all truly deflationist philosophical theories lead to arbitrariness of mathematics. In all other philosophical accounts of mathematics there is room for a reference of the pre-formal mathematics, and the expansion of Tarkian truth can be made naturally. Hence, if we reject the arbitrariness of mathematics, I argue in this work, we must accept the substantiality of truth. Related subjects such as neo-Fregeanism will also be covered, and shown not to change the need for Tarskian truth. The only remaining route for the deflationist is to change the underlying logic so that our formal languages can include their own truth predicates, which Tarski showed to be impossible for classical first-order languages. With such logics we would have no need to expand the formal systems, and the above argument would fail. From the alternative approaches, in this work I focus mostly on the Independence Friendly (IF) logic of Jaakko Hintikka and Gabriel Sandu. Hintikka has claimed that an IF language can include its own adequate truth predicate. I argue that while this is indeed the case, we cannot recognize the truth predicate as such within the same IF language, and the need for Tarskian truth remains. In addition to IF logic, also second-order logic and Saul Kripke s approach using Kleenean logic will be shown to fail in a similar fashion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Malli on logiikassa käytetty abstraktio monille matemaattisille objekteille. Esimerkiksi verkot, ryhmät ja metriset avaruudet ovat malleja. Äärellisten mallien teoria on logiikan osa-alue, jossa tarkastellaan logiikkojen, formaalien kielten, ilmaisuvoimaa malleissa, joiden alkioiden lukumäärä on äärellinen. Rajoittuminen äärellisiin malleihin mahdollistaa tulosten soveltamisen teoreettisessa tietojenkäsittelytieteessä, jonka näkökulmasta logiikan kaavoja voidaan ajatella ohjelmina ja äärellisiä malleja niiden syötteinä. Lokaalisuus tarkoittaa logiikan kyvyttömyyttä erottaa toisistaan malleja, joiden paikalliset piirteet vastaavat toisiaan. Väitöskirjassa tarkastellaan useita lokaalisuuden muotoja ja niiden säilymistä logiikkoja yhdistellessä. Kehitettyjä työkaluja apuna käyttäen osoitetaan, että Gaifman- ja Hanf-lokaalisuudeksi kutsuttujen varianttien välissä on lokaalisuuskäsitteiden hierarkia, jonka eri tasot voidaan erottaa toisistaan kasvavaa dimensiota olevissa hiloissa. Toisaalta osoitetaan, että lokaalisuuskäsitteet eivät eroa toisistaan, kun rajoitutaan tarkastelemaan äärellisiä puita. Järjestysinvariantit logiikat ovat kieliä, joissa on käytössä sisäänrakennettu järjestysrelaatio, mutta sitä on käytettävä siten, etteivät kaavojen ilmaisemat asiat riipu valitusta järjestyksestä. Määritelmää voi motivoida tietojenkäsittelyn näkökulmasta: vaikka ohjelman syötteen tietojen järjestyksellä ei olisi odotetun tuloksen kannalta merkitystä, on syöte tietokoneen muistissa aina jossakin järjestyksessä, jota ohjelma voi laskennassaan hyödyntää. Väitöskirjassa tutkitaan minkälaisia lokaalisuuden muotoja järjestysinvariantit ensimmäisen kertaluvun predikaattilogiikan laajennukset yksipaikkaisilla kvanttoreilla voivat toteuttaa. Tuloksia sovelletaan tarkastelemalla, milloin sisäänrakennettu järjestys lisää logiikan ilmaisuvoimaa äärellisissä puissa.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this thesis we study a few games related to non-wellfounded and stationary sets. Games have turned out to be an important tool in mathematical logic ranging from semantic games defining the truth of a sentence in a given logic to for example games on real numbers whose determinacies have important effects on the consistency of certain large cardinal assumptions. The equality of non-wellfounded sets can be determined by a so called bisimulation game already used to identify processes in theoretical computer science and possible world models for modal logic. Here we present a game to classify non-wellfounded sets according to their branching structure. We also study games on stationary sets moving back to classical wellfounded set theory. We also describe a way to approximate non-wellfounded sets with hereditarily finite wellfounded sets. The framework used to do this is domain theory. In the Banach-Mazur game, also called the ideal game, the players play a descending sequence of stationary sets and the second player tries to keep their intersection stationary. The game is connected to precipitousness of the corresponding ideal. In the pressing down game first player plays regressive functions defined on stationary sets and the second player responds with a stationary set where the function is constant trying to keep the intersection stationary. This game has applications in model theory to the determinacy of the Ehrenfeucht-Fraisse game. We show that it is consistent that these games are not equivalent.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador: