901 resultados para URIC-ACID LEVELS
Resumo:
Uricemia was studied in a sample of 192 individuals from a highly endemic site for Chagas' disease (Bambuí, State of Minas Gerais, Brazil). The sample had serologically negative individuals (controls) and the positive ones were classified on the basis of the presence of electrocardiographic alterations (63), altered esophageal emptying (16), or without any sign on sympton of the disease (76). Only the individuals with the digestive form of chronic Chagas' disease showed hyperuricemia, when compared with the appropriate controls. Family data suggest that hyperuricemia is an effect of the digestive pathology, rather than a cause, since the non-infected sibs of the megaesophagous patients did not show elevated levesl of serum uric acid. Possible mechanisms responsible for these findings are postulated.
Resumo:
Urea nitrogen, creatinine, and uric acid are relatively stable in postmortem serum and may, therefore, be used for diagnostic purposes when chronic kidney disease and end-stage renal failure are investigated as causes of death. Nevertheless, uncertainties remain in defining the best alternative to postmortem serum for the identification and assessment of significantly decreased kidney function. In this study, we investigated urea nitrogen, creatinine, and uric acid levels in postmortem serum, pericardial fluid, and vitreous humor in a series of medico-legal cases (500 autopsies) with various causes of death. No postmortem interval-related differences were observed in any of the investigated fluids for any analyzed parameter, confirming the biochemical stability of all compounds after death. Data analysis failed to reveal statistically significant differences between postmortem serum and pericardial fluid urea nitrogen, creatinine, and uric acid concentrations. Conversely, statistically significant differences were observed in all analyzed biomarkers between postmortem serum and vitreous humor levels, with lower concentrations of all markers measured in vitreous. The results of this study suggest that, in order to estimate as accurately as possible blood analyte concentrations at the time of death, pericardial fluid should be preferred to vitreous humor.
Resumo:
A uricemia foi estudada em uma amostra de 192 indivíduos de uma região altamente endêmica para a doença de Chagas (Bambuí, Estado de Minas Gerais, Brasil). A amostra continha 50 indivíduos sorologicamente negativos (controles) e os positivos foram classificados na base da presença de alterações eletrocardiográficas (63), esvaziamento esofagiano alterado (16), ou ausência de sinais ou sintomas da doença (76). Somente os indivíduos com a forma digestiva da doença de Chagas crônico mostraram hiperuricemia, quando comparados com controles adequados. Dados familiares sugerem que a hiperuricemia é um efeito da patologia digestiva em vez de causa, uma vez que os irmãos não afetados dos pacientes com megaesôfago não apresentaram níveis elevados de ácido úrico sérico. São postulados alguns mecanismos possivelmente responsáveis pelos achados.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Uric acid is a danger signal activating NALP3 inflammasome in lung injury inflammation and fibrosis.
Resumo:
RATIONALE: Lung injury leads to pulmonary inflammation and fibrosis through myeloid differentiation primary response gene 88 (MyD88) and the IL-1 receptor 1 (IL-1R1) signaling pathway. The molecular mechanisms by which lung injury triggers IL-1beta production, inflammation, and fibrosis remain poorly understood. OBJECTIVES: To determine if lung injury depends on the NALP3 inflammasome and if bleomycin (BLM)-induced lung injury triggers local production of uric acid, thereby activating the NALP3 inflammasome in the lung. Methods: Inflammation upon BLM administration was evaluated in vivo in inflammasome-deficient mice. Pulmonary uric acid accumulation, inflammation, and fibrosis were analyzed in mice treated with the inhibitor of uric acid synthesis or with uricase, which degrades uric acid. MEASUREMENTS AND MAIN RESULTS: Lung injury depends on the NALP3 inflammasome, which is triggered by uric acid locally produced in the lung upon BLM-induced DNA damage and degradation. Reduction of uric acid levels using the inhibitor of uric acid synthesis allopurinol or uricase leads to a decrease in BLM-induced IL-1beta production, lung inflammation, repair, and fibrosis. Local administration of exogenous uric acid crystals recapitulates lung inflammation and repair, which depend on the NALP3 inflammasome, MyD88, and IL-1R1 pathways and Toll-like receptor (TLR)2 and TLR4 for optimal inflammation but are independent of the IL-18 receptor. CONCLUSIONS: Uric acid released from injured cells constitutes a major endogenous danger signal that activates the NALP3 inflammasome, leading to IL-1beta production. Reducing uric acid tissue levels represents a novel therapeutic approach to control IL-1beta production and chronic inflammatory lung pathology.
Resumo:
Asymptomatic hyperuricemia affects one in five adults in the general population and is associated with elevated cardiovascular risk. It is however not clear whether asymptomatic hyperuricemia is a cause or simply a marker of conditions associated with high cardiovascular risk. Sex, age, obesity, renal function and selected drugs are major determinants of serum uric acid. Moreover, recent genome-wide association studies have identified new genes involved in the control of serum uric acid levels, in particular SLC2A9, which encodes a urate transporter located in the kidney. A genetic score based on several genetic variants associated with serum uric acid is strongly associated with the risk of gout, but not with cardiovascular events so far.
Resumo:
BACKGROUND. Transsexual persons afford a very suitable model to study the effect of sex steroids on uric acid metabolism. DESIGN. This was a prospective study to evaluate the uric acid levels and fractional excretion of uric acid (FEUA) in a cohort of 69 healthy transsexual persons, 22 male-to-female transsexuals (MFTs) and 47 female-to-male transsexuals (FMTs).The subjects were studied at baseline and 1 and 2 yr after starting cross-sex hormone treatment. RESULTS. The baseline levels of uric acid were higher in the MFT group.Compared with baseline, uric acid levels had fallen significantly after 1 yr of hormone therapy in the MFT group and had risen significantly in the FMT group. The baseline FEUA was greater in the FMT group. After 2 yr of cross-sex hormone therapy, the FEUA had increased in MFTs (P = 0.001) and fallen in FMTs (P = 0.004).In MFTs, the levels of uric acid at 2 yr were lower in those who had received higher doses of estrogens (P = 0.03),and the FEUA was higher (P = 0.04).The FEUA at 2 yr was associated with both the estrogen dose (P = 0.02) and the serum levels of estradiol-17beta (P =0.03).In MFTs, a correlation was found after 2 yr of therapy between the homeostasis model assessment of insulin resistance and the serum uric acid (r = 0.59; P = 0.01). CONCLUSIONS. Serum levels of uric acid and the FEUA are altered in transsexuals as a result of cross-sex hormone therapy.The results concerning the MFT group support the hypothesis that the lower levels of uric acid in women are due to estrogen-induced increases in FEUA.
Resumo:
Asymptomatic hyperuricemia affects one in five adults in the general population and is associated with elevated cardiovascular risk. It is however not clear whether asymptomatic hyperuricemia is a cause or simply a marker of conditions associated with high cardiovascular risk. Sex, age, obesity, renal function and selected drugs are major determinants of serum uric acid. Moreover, recent genome-wide association studies have identified new genes involved in the control of serum uric acid levels, in particular SLC2A9, which encodes a urate transporter located in the kidney. A genetic score based on several genetic variants associated with serum uric acid is strongly associated with the risk of gout, but not with cardiovascular events so far.
Resumo:
OBJECTIVE: Losartan has been shown to increase urinary uric acid excretion and hence to lower serum uric acid levels. The purposes of the present study were: (1) to evaluate the effects of losartan on serum uric acid in hypertensive patients with hyperuricemia and gout, (2) to compare the effects of losartan with those of irbesartan, another angiotensin II receptor antagonist and (3) to evaluate whether losartan 50 mg b.i.d. has a greater impact on serum uric acid levels than losartan 50 mg once a day. METHODS: Thirteen hypertensive patients with hyperuricaemia and gout completed this prospective, randomized, double-blind, cross-over study. Uric acid-lowering drugs were stopped 3 weeks before the beginning of the study. Patients were randomized to receive either losartan 50 mg or irbesartan 150 mg once a day, for 4 weeks. During this phase, a placebo was given in the evening. After 4 weeks, the dose was increased to losartan 50 mg b.i.d., or irbesartan 150 mg b.i.d. for another 4 week period. Subsequently, the patients were switched to the alternative treatment modality. Enalapril (20 mg o.d.) was given during the run-in period and between the two treatment phases. Serum and urinary uric acid were measured at the beginning and at the end of each treatment phase. RESULTS: Our results show that losartan 50 mg once daily decreased serum uric acid levels from 538 +/- 26 to 491 +/- 20 micromol/l (P < 0.01). Irbesartan had no effect on serum uric acid. Increasing the dose of losartan from 50 mg o.d. to 50 mg twice a day, did not further decrease serum uric acid. This may in part be due to a low compliance to the evening dose as measured with an electronic device. Indeed, whatever the prescribed drug, the mean compliance of the evening dose was always significantly lower than that of the morning dose. The uricosuric effect of losartan appears to decrease with time when a new steady state of lower serum uric acid is reached. CONCLUSIONS: In contrast to irbesartan, losartan was uricosuric and decreased serum uric acid levels. Losartan 50 mg b.i.d. did not produce a greater fall in serum uric acid than losartan once a day. Losartan might be a useful therapeutic tool to control blood pressure and reduce serum uric acid levels in hypertensive patients with hyperuricaemia and gout.
Resumo:
AIMS/HYPOTHESIS: Epidemiological and experimental evidence suggests that uric acid has a role in the aetiology of type 2 diabetes. Using a Mendelian randomisation approach, we investigated whether there is evidence for a causal role of serum uric acid for development of type 2 diabetes. METHODS: We examined the associations of serum-uric-acid-raising alleles of eight common variants recently identified in genome-wide association studies and summarised this in a genetic score with type 2 diabetes in case-control studies including 7,504 diabetes patients and 8,560 non-diabetic controls. We compared the observed effect size to that expected based on: (1) the association between the genetic score and uric acid levels in non-diabetic controls; and (2) the meta-analysed uric acid level to diabetes association. RESULTS: The genetic score showed a linear association with uric acid levels, with a difference of 12.2 μmol/l (95% CI 9.3, 15.1) by score tertile. No significant associations were observed between the genetic score and potential confounders. No association was observed between the genetic score and type 2 diabetes with an OR of 0.99 (95% CI 0.94, 1.04) per score tertile, significantly different (p = 0.046) from that expected (1.04 [95% CI 1.03, 1.05]) based on the observed uric acid difference by score tertile and the uric acid to diabetes association of 1.21 (95% CI 1.14, 1.29) per 60 μmol/l. CONCLUSIONS/INTERPRETATION: Our results do not support a causal role of serum uric acid for the development of type 2 diabetes and limit the expectation that uric-acid-lowering drugs will be effective in the prevention of type 2 diabetes.
Resumo:
Uric acid is the metabolic end product of purine metabolism in humans. It has antioxidant properties that may be protective but can also be pro-oxidant, depending on its chemical microenvironment. Hyperuricemia predisposes to disease through the formation of urate crystals that cause gout, but hyperuricemia, independent of crystal formation, has also been linked with hypertension, atherosclerosis, insulin resistance, and diabetes. We discuss here the biology of urate metabolism and its role in disease. We also cover the genetics of urate transport, including URAT1, and recent studies identifying SLC2A9, which encodes the glucose transporter family isoform Glut9, as a major determinant of plasma uric acid levels and of gout development.
Resumo:
BACKGROUND: The prevalence of hyperuricemia has rarely been investigated in developing countries. The purpose of the present study was to investigate the prevalence of hyperuricemia and the association between uric acid levels and the various cardiovascular risk factors in a developing country with high average blood pressures (the Seychelles, Indian Ocean, population mainly of African origin). METHODS: This cross-sectional health examination survey was based on a population random sample from the Seychelles. It included 1011 subjects aged 25 to 64 years. Blood pressure (BP), body mass index (BMI), waist circumference, waist-to-hip ratio, total and HDL cholesterol, serum triglycerides and serum uric acid were measured. Data were analyzed using scatterplot smoothing techniques and gender-specific linear regression models. RESULTS: The prevalence of a serum uric acid level >420 micromol/L in men was 35.2% and the prevalence of a serum uric acid level >360 micromol/L was 8.7% in women. Serum uric acid was strongly related to serum triglycerides in men as well as in women (r = 0.73 in men and r = 0.59 in women, p < 0.001). Uric acid levels were also significantly associated but to a lesser degree with age, BMI, blood pressure, alcohol and the use of antihypertensive therapy. In a regression model, triglycerides, age, BMI, antihypertensive therapy and alcohol consumption accounted for about 50% (R2) of the serum uric acid variations in men as well as in women. CONCLUSIONS: This study shows that the prevalence of hyperuricemia can be high in a developing country such as the Seychelles. Besides alcohol consumption and the use of antihypertensive therapy, mainly diuretics, serum uric acid is markedly associated with parameters of the metabolic syndrome, in particular serum triglycerides. Considering the growing incidence of obesity and metabolic syndrome worldwide and the potential link between hyperuricemia and cardiovascular complications, more emphasis should be put on the evolving prevalence of hyperuricemia in developing countries.
Resumo:
Elevated serum uric acid levels cause gout and are a risk factor for cardiovascular disease and diabetes. To investigate the polygenetic basis of serum uric acid levels, we conducted a meta-analysis of genome-wide association scans from 14 studies totalling 28,141 participants of European descent, resulting in identification of 954 SNPs distributed across nine loci that exceeded the threshold of genome-wide significance, five of which are novel. Overall, the common variants associated with serum uric acid levels fall in the following nine regions: SLC2A9 (p = 5.2x10(-201)), ABCG2 (p = 3.1x10(-26)), SLC17A1 (p = 3.0x10(-14)), SLC22A11 (p = 6.7x10(-14)), SLC22A12 (p = 2.0x10(-9)), SLC16A9 (p = 1.1x10(-8)), GCKR (p = 1.4x10(-9)), LRRC16A (p = 8.5x10(-9)), and near PDZK1 (p = 2.7x10(-9)). Identified variants were analyzed for gender differences. We found that the minor allele for rs734553 in SLC2A9 has greater influence in lowering uric acid levels in women and the minor allele of rs2231142 in ABCG2 elevates uric acid levels more strongly in men compared to women. To further characterize the identified variants, we analyzed their association with a panel of metabolites. rs12356193 within SLC16A9 was associated with DL-carnitine (p = 4.0x10(-26)) and propionyl-L-carnitine (p = 5.0x10(-8)) concentrations, which in turn were associated with serum UA levels (p = 1.4x10(-57) and p = 8.1x10(-54), respectively), forming a triangle between SNP, metabolites, and UA levels. Taken together, these associations highlight additional pathways that are important in the regulation of serum uric acid levels and point toward novel potential targets for pharmacological intervention to prevent or treat hyperuricemia. In addition, these findings strongly support the hypothesis that transport proteins are key in regulating serum uric acid levels.
Resumo:
Background: Dietary creatine has been largely used as an ergogenic aid to improve strength and athletic performance, especially in short-term and high energy-demanding anaerobic exercise. Recent findings have also suggested a possible antioxidant role for creatine in muscle tissues during exercise. Here we evaluate the effects of a 1-week regimen of 20 g/day creatine supplementation on the plasma antioxidant capacity, free and heme iron content, and uric acid and lipid peroxidation levels of young subjects (23.1 +/- 5.8 years old) immediately before and 5 and 60 min after the exhaustive Wingate test. Results: Maximum anaerobic power was improved by acute creatine supplementation (10.5 %), but it was accompanied by a 2.4-fold increase in pro-oxidant free iron ions in the plasma. However, potential iron-driven oxidative insult was adequately counterbalanced by proportional increases in antioxidant ferric-reducing activity in plasma (FRAP), leading to unaltered lipid peroxidation levels. Interestingly, the FRAP index, found to be highly dependent on uric acid levels in the placebo group, also had an additional contribution from other circulating metabolites in creatine-fed subjects. Conclusions: Our data suggest that acute creatine supplementation improved the anaerobic performance of athletes and limited short-term oxidative insults, since creatine-induced iron overload was efficiently circumvented by acquired FRAP capacity attributed to: overproduction of uric acid in energy-depleted muscles (as an end-product of purine metabolism and a powerful iron chelating agent) and inherent antioxidant activity of creatine.
Resumo:
Hyperuricaemia is one of the components of metabolic syndrome. Both oxidative stress and hyperinsulinism are important variables in the genesis of this syndrome and have a close association with uric acid (UA). We evaluated the effect of an oral glucose challenge on UA concentrations. The study included 656 persons aged 18 to 65 years. Glycaemia, insulin, UA and plasma proteins were measured at baseline and 120 min after an oral glucose tolerance test (OGTT). The baseline sample also included measurements of total cholesterol, triacylglycerol (TAG) and HDL-cholesterol. Insulin resistance was calculated with the homeostasis model assessment. UA levels were significantly lower after the OGTT (281.93 (sd 92.19) v. 267.48 (sd 90.40) micromol/l; P < 0.0001). Subjects with a drop in UA concentrations >40.86 micromol/l (>75th percentile) had higher plasma TAG levels (P = 0.0001), baseline insulin (P = 0.02) and greater insulin resistance (P = 0.034). Women with a difference in plasma concentrations of UA above the 75th percentile had higher baseline insulin levels (P = 0.019), concentration of plasma TAG (P = 0.0001) and a greater insulin resistance index (P = 0.029), whereas the only significant difference in men was the level of TAG. Multiple regression analysis showed that the basal TAG levels, insulin at 120 min, glycaemia at 120 min and waist:hip ratio significantly predicted the variance in the UA difference (r2 0.077). Levels of UA were significantly lower after the OGTT and the individuals with the greatest decrease in UA levels are those who have greater insulin resistance and higher TAG levels.