995 resultados para Tribological characteristics
Resumo:
TiSiC-Cr coatings, with Cr and Si as additional elements, were deposited on Si, C 45 and 316 L steel substrates via cathodic arc evaporation. Two series of coatings with thicknesses in the range of 3.6–3.9 μm were produced, using either CH4 or C2H2 as carbon containing gas. For each series, different coatings were prepared by varying the carbon rich gas flow rate between 90 and 130 sccm, while maintaining constant cathode currents (110 and 100 A at TiSi and Cr cathodes, respectively), substrate bias (–200 V) and substrate temperature (∼320 °C). The coatings were analyzed for their mechanical characteristics (hardness, adhesion) and tribological performance (friction, wear), along with their elemental and phase composition, chemical bonds, crystalline structure and cross-sectional morphology. The coatings were found to be formed with nano-scale composite structures consisting of carbide crystallites (grain size of 3.1–8.2 nm) and amorphous hydrogenated carbon. The experimental results showed significant differences between the two coating series, where the films formed from C2H2 exhibited markedly superior characteristics in terms of microstructure, morphology, hardness, friction behaviour and wear resistance. For the coatings prepared using CH4, the measured values of crystallite size, hardness, friction coefficient and wear rate were in the ranges of 7.2–8.2 nm, 26–30 GPa, 0.3–0.4 and 2.1–4.8 × 10−6 mm3 N−1 m−1, respectively, while for the coatings grown in C2H2, the values of these characteristics were found to be in the ranges of 3.1–3.7 nm, 41–45 GPa, 0.1–0.2 and 1.4–3.0 × 10−6 mm3 N−1 m−1, respectively. Among the investigated coatings, the one produced using C2H2 at the highest flow rate (130 sccm) exhibited the highest hardness (45.1 GPa), the lowest friction coefficient (0.10) and the best wear resistance (wear rate of 1.4 × 10−6 mm3 N−1 m−1).
Resumo:
The chemical and dimensional stability associated with suitable fracture toughness and propitious tribological characteristics make silicon nitride-based ceramics potential candidates for biomedical applications, mainly as orthopedic implants. Considering this combination of properties, silicon nitride components were investigated in relation to their biocompatibility. For this study, two cylindrical implants were installed in each tibia of five rabbits and were kept in the animals for 8 weeks. During the healing time, tissue tracers were administrated in the animals so as to evaluate the bone growth around the implants. Eight weeks after the surgery, the animals were euthanized and histological analyses were performed. No adverse reactions were observed close to the implant. The osteogenesis process occurred during the entire period defined by the tracers. However, this process occurred more intensely 4 weeks after the surgery. In addition, the histological analyses showed that bone growth occurred preferentially in the cortical areas. Different kinds of tissue were identified on the implant surface, characterized by lamellar bone tissue containing osteocytes and osteons, by a noncalcified matrix containing osteoblasts, or by the presence of collagen III, which may change to collagen I or remain as a fibrous tissue. The results demonstrated that silicon nitride obtained according to the procedure proposed in this research is a biocompatible material. (c) 2007 Wiley Periodicals, Inc.
Resumo:
A digital-desk pilot program, named One Laptop Per Child (OPLC), in Brazil uses a unique display design to provide an interactive interface developed to enhance education and minimize ergonomic concerns. The one-to-one computer strategy as proposed by Nicholas Negroponte is a way of circumventing the tragedy of the locked computer lab because it gives children full access to computers anytime. The OLPC program has focused on a solution that minimizes power consumption, which also limits the display's maximum size and processor performance because the LCD backlights are responsible for a significant part of the power consumption in laptops. The government has also developed a new type of low-cost tablet that is based on a resistive principle. High transparencies can be obtained in the 90% range in the tablet, while robustness is guaranteed by the outstanding tribological characteristics of Sn02 on glass.
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
In recent decades, changes in the surface properties of materials have been used to improve their tribological characteristics. However, this improvement depends on the process, treatment time and, primarily, the thickness of this surface film layer. Physical vapor deposition (PVD) of titanium nitrate (TiN) has been used to increase the surface hardness of metallic materials. Thus, the aim of the present study was to propose a numerical-experimental method to assess the film thickness (l) of TiN deposited by PVD. To reach this objective, experimental results of hardness (H) assays were combined with a numerical simulation to study the behavior of this property as a function of maximum penetration depth of the indenter (hmax) into the film/substrate conjugate. Two methodologies were adopted to determine film thickness. The first consists of the numerical results of the H x hmax curve with the experimental curve obtained by the instrumental indentation test. This methodology was used successfully in a TiN-coated titanium (Ti) conjugate. A second strategy combined the numerical results of the Hv x hmax curve with Vickers experimental hardness data (Hv). This methodology was applied to a TiN-coated M2 tool steel conjugate. The mechanical properties of the materials studied were also determined in the present study. The thicknesses results obtained for the two conjugates were compatible with their experimental data.
Resumo:
A new test method based on multipass scratch testing has been developed for evaluating the mechanical and tribological properties of thin, hard coatings. The proposed test method uses a pin-on-disc tribometer and during testing a Rockwell C diamond stylus is used as the “pin” and loaded against the rotating coated sample. The influence of normal load on the number of cycles to coating damage is investigated and the resulting coating damage mechanisms are evaluated by posttest scanning electron microscopy. The present study presents the test method by evaluating the performance of Ti0.86Si0.14N, Ti0.34Al0.66N, and (Al0.7Cr0.3)2O3 coatings deposited by cathodic arc evaporation on cemented carbide inserts. The results show that the test method is quick, simple, and reproducible and can preferably be used to obtain relevant data concerning the fatigue, wear, chipping, and spalling characteristics of different coating-substrate composites. The test method can be used as a virtually nondestructive test and, for example, be used to evaluate the fatigue and wear resistance as well as the cohesive and adhesive interfacial strength of coated cemented carbide inserts prior to cutting tests.
Resumo:
The present thesis focuses on characterisation of microstructure and the resulting mechanical and tribological properties of CVD and PVD coatings used in metal cutting applications. These thin and hard coatings are designed to improve the tribological performance of cutting tools which in metal cutting operations may result in improved cutting performance, lower energy consumption, lower production costs and lower impact on the environment. In order to increase the understanding of the tribological behaviour of the coating systems a number of friction and wear tests have been performed and evaluated by post-test microscopy and surface analysis. Much of the work has focused on coating cohesive and adhesive strength, surface fatigue resistance, abrasive wear resistance and friction and wear behaviour under sliding contact and metal cutting conditions. The results show that the CVD deposition of accurate crystallographic phases, e.g. α-Al2O3 rather than κ-Al2O3, textures and multilayer structures can increase the wear resistance of Al2O3. However, the characteristics of the interfaces, e.g. topography as well as interfacial porosity, have a strong impact on coating adhesion and consequently on the resulting properties. Through the deposition of well designed bonding and template layer structures the above problems may be eliminated. Also, the presence of macro-particles in PVD coatings may have a significant impact on the interfacial adhesive strength, increasing the tendency to coating spalling and lowering the surface fatigue resistance, as well as increasing the friction in sliding contacts. Finally, the CVD-Al2O3 coating topography influences the contact conditions in sliding as well as in metal cutting. In summary, the work illuminates the importance of understanding the relationships between deposition process parameters, composition and microstructure, resulting properties and tribological performance of CVD and PVD coatings and how this knowledge can be used to develop the coating materials of tomorrow.
Resumo:
Films of silk fibroin (SF) and sodium alginate (SA) blends were prepared by solution casting technique. The miscibility of SF and SA in those blends was evaluated and scanning electron microscopy (SEM) revealed that SF/SA 25/75 wt.% blends underwent microscopic phase separation, resulting in globular structures composed mainly of SF. X-ray diffraction indicated the amorphous nature of these blends, even after a treatment with ethanol that turned them insoluble in water. Thermal analyses of blends showed the peaks of degradation of pristine SF and SA shifted to intermediate temperatures. Water vapor permeability, swelling capacity and tensile strength of SF films could be enhanced by blending with SA. Cell viability remained between 90 and 100%, as indicated by in vitro cytotoxicity test. The SF/SA blend with self-assembled SF globules can be used to modulate structural and mechanical properties of the final material and may be used in designing high performance wound dressing.
Resumo:
Lower levels of cytosine methylation have been found in the liver cell DNA from non-obese diabetic (NOD) mice under hyperglycemic conditions. Because the Fourier transform-infrared (FT-IR) profiles of dry DNA samples are differently affected by DNA base composition, single-stranded form and histone binding, it is expected that the methylation status in the DNA could also affect its FT-IR profile. The DNA FT-IR signatures obtained from the liver cell nuclei of hyperglycemic and normoglycemic NOD mice of the same age were compared. Dried DNA samples were examined in an IR microspectroscope equipped with an all-reflecting objective (ARO) and adequate software. Changes in DNA cytosine methylation levels induced by hyperglycemia in mouse liver cells produced changes in the respective DNA FT-IR profiles, revealing modifications to the vibrational intensities and frequencies of several chemical markers, including νas -CH3 stretching vibrations in the 5-methylcytosine methyl group. A smaller band area reflecting lower energy absorbed in the DNA was found in the hyperglycemic mice and assumed to be related to the lower levels of -CH3 groups. Other spectral differences were found at 1700-1500 cm(-1) and in the fingerprint region, and a slight change in the DNA conformation at the lower DNA methylation levels was suggested for the hyperglycemic mice. The changes that affect cytosine methylation levels certainly affect the DNA-protein interactions and, consequently, gene expression in liver cells from the hyperglycemic NOD mice.
Resumo:
The aim of this work is focused on the extraction and characterization of the Brazilian seaweed Sargassum filipendula alginate. Alginates obtained at different seasons were characterized by liquid state nuclear magnetic resonance spectroscopy and scanning electron microscopy. The alginate extraction efficiency was about 20%. Different seasons of the year and different stages in the life cycle of Sargassum sp. in southeastern Brazil influenced the M/G and, consequently, the technological properties of extracted alginates.
Resumo:
The new social panorama resulting from aging of the Brazilian population is leading to significant transformations within healthcare. Through the cluster analysis strategy, it was sought to describe the specific care demands of the elderly population, using frailty components. Cross-sectional study based on reviewing medical records, conducted in the geriatric outpatient clinic, Hospital de Clínicas, Universidade Estadual de Campinas (Unicamp). Ninety-eight elderly users of this clinic were evaluated using cluster analysis and instruments for assessing their overall geriatric status and frailty characteristics. The variables that most strongly influenced the formation of clusters were age, functional capacities, cognitive capacity, presence of comorbidities and number of medications used. Three main groups of elderly people could be identified: one with good cognitive and functional performance but with high prevalence of comorbidities (mean age 77.9 years, cognitive impairment in 28.6% and mean of 7.4 comorbidities); a second with more advanced age, greater cognitive impairment and greater dependence (mean age 88.5 years old, cognitive impairment in 84.6% and mean of 7.1 comorbidities); and a third younger group with poor cognitive performance and greater number of comorbidities but functionally independent (mean age 78.5 years old, cognitive impairment in 89.6% and mean of 7.4 comorbidities). These data characterize the profile of this population and can be used as the basis for developing efficient strategies aimed at diminishing functional dependence, poor self-rated health and impaired quality of life.
Resumo:
Sensory changes during the storage of coffee beans occur mainly due to lipid oxidation and are responsible for the loss of commercial value. This work aimed to verify how sensory changes of natural coffee and pulped natural coffee are related to the oxidative processes during 15 months of storage. During this period, changes in the content of free fatty acids (1.4-3.8 mg/g oil), TBARS values (8.8-10.2 nmol MDA/g), and carbonyl groups (2.6-3.5 nmol/mg of protein) occurred. The intensity of rested coffee flavour in the coffee brew increased (2.1-6.7) and 5-caffeoylquinic acid concentration decreased (5.2-4.6g/100g). Losses were also observed in seed viability, colour of the beans and cellular structure. All the results of the chemical analyses are coherent with the oxidative process that occurred in the grains during storage. Therefore, oxidation would be also responsible for the loss of cellular structure, seed viability and sensory changes.
Resumo:
To evaluate some microbiological aspects of the vaginal flora and the vaginal trophism of women with premature ovarian failure (POF) in use of oral hormone therapy. A cross-sectional study with 36 women with POF under the age of 40 years using oral hormonal therapy. They were age matched with 36 women with normal gonadal function (control group). The characteristics of the vaginal epithelium were assessed through the hormonal vaginal cytology, vaginal pH measurement and vaginal health index to identify vaginal disturbances. Vaginal microflora was evaluated by the amine test, bacterioscopy (Nugent score) and culture for fungi to identify vaginal abnormal microflora and fungi infections. Despite the fact that there were no statistical significant differences related to the cytological aspects and pH measurements, it was found that the vaginal health index was highly superior in the control group than in the POF group (23.4 ± 1.8 vs 20.8 ± 3.5), p < 0.0001 despite both groups had trophic scores. There were no statistical significance differences regarding to vaginal microflora types and fungi infection. Oral hormone therapy for young women with POF seems to be good enough to reestablish the epithelium cells, vaginal pH and microflora.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
OBJECTIVE: The objective of this study was to compare the skeletal, dental and soft tissue characteristics of Caucasian and Afro-Caucasian Brazilian subjects with normal occlusion and to evaluate sexual dimorphism within the groups. MATERIAL AND METHODS: The sample comprised lateral cephalograms of untreated normal occlusion subjects, divided into 2 groups. Group 1 included 40 Caucasian subjects (20 of each sex), with a mean age of 13.02 years; group 2 included 40 Afro-Caucasian subjects (20 of each sex), with a mean age of 13.02 years. Groups 1 and 2 and males and females within each group were compared with t tests. RESULTS: Afro-Caucasian subjects presented greater maxillary protrusion, smaller upper anterior face height and lower posterior face height, larger upper posterior face height, greater maxillary and mandibular dentoalveolar protrusion as well as soft tissue protrusion than Caucasian subjects. The Afro-Caucasian female subjects had less mandibular protrusion and smaller total posterior facial height and upper posterior facial height than males. CONCLUSIONS: Brazilian Afro-Caucasian subjects have greater dentoalveolar and soft tissue protrusion than Brazilian Caucasian subjects, with slight sexual dimorphism in some variables.