548 resultados para Traveling salesman
Resumo:
The traveling salesman problem is although looking very simple problem but it is an important combinatorial problem. In this thesis I have tried to find the shortest distance tour in which each city is visited exactly one time and return to the starting city. I have tried to solve traveling salesman problem using multilevel graph partitioning approach.Although traveling salesman problem itself very difficult as this problem is belong to the NP-Complete problems but I have tried my best to solve this problem using multilevel graph partitioning it also belong to the NP-Complete problems. I have solved this thesis by using the k-mean partitioning algorithm which divides the problem into multiple partitions and solving each partition separately and its solution is used to improve the overall tour by applying Lin Kernighan algorithm on it. Through all this I got optimal solution which proofs that solving traveling salesman problem through graph partition scheme is good for this NP-Problem and through this we can solved this intractable problem within few minutes.Keywords: Graph Partitioning Scheme, Traveling Salesman Problem.
Resumo:
In questa tesi viene presentato un nuovo metaeuristico per la risoluzione del Traveling Salesman Problem (TSP) simmetrico. Tale metodo, detto algoritmo bionomico, è una variante dell'algoritmo genetico che usa un metodo innovativo di generazione del parents set. Nella tesi vengono proposti diversi metodi di crossover specifici per il TSP ma che possono essere facilmente estesi per altri problemi di ottimizzazione combinatoria. Tali metodi sono stati sperimentati su un insieme di problemi test, i risultati computazionali mostrano l'efficienza dei metodi proposti. In particolare uno dei metodi domina gli altri sia per la miglior qualità delle soluzioni prodotte che per il minor tempo di calcolo impiegato.
Resumo:
"Supported in part jointly by the Atomic Energy Commission and the Advanced Research Projects Agency (ARPA) under AEC Contract AT(11-1)-1018."
Resumo:
The article presents the exact algorithm for solving one case of the job-scheduling problem for the case when the source matrix is ordered by rows.
Resumo:
We present a frontier based algorithm for searching multiple goals in a fully unknown environment, with only information about the regions where the goals are most likely to be located. Our algorithm chooses an ``active goal'' from the ``active goal list'' generated by running a Traveling Salesman Problem (Tsp) routine with the given centroid locations of the goal regions. We use the concept of ``goal switching'' which helps not only in reaching more number of goals in given time, but also prevents unnecessary search around the goals that are not accessible (surrounded by walls). The simulation study shows that our algorithm outperforms Multi-Heuristic LRTA* (MELRTA*) which is a significant representative of multiple goal search approaches in an unknown environment, especially in environments with wall like obstacles.
Resumo:
提出贪心遗传算法。通过构建“基因库”形成好的“基因片断”,从而生成高性能的初始种群;依据贪心选择的原则指导遗传操作,实施贪心交叉操作和贪心变异操作;移民操作向种群引进新的遗传物质,克服了封闭竞争缺点,并且可以避免早熟收敛。贪心遗传算法可以大大加快搜索的速度,仿真结果表明算法是十分有效和实用的。
Resumo:
This paper studies two models of two-stage processing with no-wait in process. The first model is the two-machine flow shop, and the other is the assembly model. For both models we consider the problem of minimizing the makespan, provided that the setup and removal times are separated from the processing times. Each of these scheduling problems is reduced to the Traveling Salesman Problem (TSP). We show that, in general, the assembly problem is NP-hard in the strong sense. On the other hand, the two-machine flow shop problem reduces to the Gilmore-Gomory TSP, and is solvable in polynomial time. The same holds for the assembly problem under some reasonable assumptions. Using these and existing results, we provide a complete complexity classification of the relevant two-stage no-wait scheduling models.
Resumo:
This paper examines scheduling problems in which the setup phase of each operation needs to be attended by a single server, common for all jobs and different from the processing machines. The objective in each situation is to minimize the makespan. For the processing system consisting of two parallel dedicated machines we prove that the problem of finding an optimal schedule is NP-hard in the strong sense even if all setup times are equal or if all processing times are equal. For the case of m parallel dedicated machines, a simple greedy algorithm is shown to create a schedule with the makespan that is at most twice the optimum value. For the two machine case, an improved heuristic guarantees a tight worst-case ratio of 3/2. We also describe several polynomially solvable cases of the later problem. The two-machine flow shop and the open shop problems with a single server are also shown to be NP-hard in the strong sense. However, we reduce the two-machine flow shop no-wait problem with a single server to the Gilmore-Gomory traveling salesman problem and solve it in polynomial time. (c) 2000 John Wiley & Sons, Inc.
Resumo:
This thesis introduces the Salmon Algorithm, a search meta-heuristic which can be used for a variety of combinatorial optimization problems. This algorithm is loosely based on the path finding behaviour of salmon swimming upstream to spawn. There are a number of tunable parameters in the algorithm, so experiments were conducted to find the optimum parameter settings for different search spaces. The algorithm was tested on one instance of the Traveling Salesman Problem and found to have superior performance to an Ant Colony Algorithm and a Genetic Algorithm. It was then tested on three coding theory problems - optimal edit codes, optimal Hamming distance codes, and optimal covering codes. The algorithm produced improvements on the best known values for five of six of the test cases using edit codes. It matched the best known results on four out of seven of the Hamming codes as well as three out of three of the covering codes. The results suggest the Salmon Algorithm is competitive with established guided random search techniques, and may be superior in some search spaces.
Resumo:
Dans ce mémoire, nous présentons un nouveau type de problème de confection de tour- née pour un seul véhicule avec cueillettes et livraisons et contrainte de chargement. Cette variante est motivée par des problèmes similaires rapportés dans la littérature. Le véhi- cule en question contient plusieurs piles où des colis de hauteurs différentes sont empilés durant leur transport. La hauteur totale des items contenus dans chacune des piles ne peut dépasser une certaine hauteur maximale. Aucun déplacement n’est permis lors de la li- vraison d’un colis, ce qui signifie que le colis doit être sur le dessus d’une pile au moment d’être livré. De plus, tout colis i ramassé avant un colis j et contenu dans la même pile doit être livré après j. Une heuristique à grand voisinage, basé sur des travaux récents dans le domaine, est proposée comme méthode de résolution. Des résultats numériques sont rapportés pour plusieurs instances classiques ainsi que pour de nouvelles instances.
Resumo:
The work described in this thesis began as an inquiry into the nature and use of optimization programs based on "genetic algorithms." That inquiry led, eventually, to three powerful heuristics that are broadly applicable in gradient-ascent programs: First, remember the locations of local maxima and restart the optimization program at a place distant from previously located local maxima. Second, adjust the size of probing steps to suit the local nature of the terrain, shrinking when probes do poorly and growing when probes do well. And third, keep track of the directions of recent successes, so as to probe preferentially in the direction of most rapid ascent. These algorithms lie at the core of a novel optimization program that illustrates the power to be had from deploying them together. The efficacy of this program is demonstrated on several test problems selected from a variety of fields, including De Jong's famous test-problem suite, the traveling salesman problem, the problem of coordinate registration for image guided surgery, the energy minimization problem for determining the shape of organic molecules, and the problem of assessing the structure of sedimentary deposits using seismic data.
Resumo:
La optimización de sistemas y modelos se ha convertido en uno de los factores más importantes a la hora de buscar la mayor eficiencia de un proceso. Este concepto no es ajeno al transporte escolar, ambiente que cambia constantemente al ritmo de las necesidades de sus clientes, y que responde ante una fuerte responsabilidad frente a sus usuarios, los niños que hacen uso del servicio, en cuanto al cumplimiento de tiempos y seguridad, mientras busca constantemente la reducción de costos. Este proyecto expone las problemáticas presentadas en The English School en esta área y propone un modelo de optimización simple que permitirá notables mejoras en términos de tiempos y costos, de tal forma que genere beneficios para la institución en términos financieros y de satisfacción al cliente. Por medio de la implementación de este modelo será posible identificar errores comunes del proceso, se identificarán soluciones prácticas de fácil aplicación en el manejo del transporte y se presentarán los resultados obtenidos en la muestra utilizada para desarrollar el proyecto.
Resumo:
This Thesis Work will concentrate on a very interesting problem, the Vehicle Routing Problem (VRP). In this problem, customers or cities have to be visited and packages have to be transported to each of them, starting from a basis point on the map. The goal is to solve the transportation problem, to be able to deliver the packages-on time for the customers,-enough package for each Customer,-using the available resources- and – of course - to be so effective as it is possible.Although this problem seems to be very easy to solve with a small number of cities or customers, it is not. In this problem the algorithm have to face with several constraints, for example opening hours, package delivery times, truck capacities, etc. This makes this problem a so called Multi Constraint Optimization Problem (MCOP). What’s more, this problem is intractable with current amount of computational power which is available for most of us. As the number of customers grow, the calculations to be done grows exponential fast, because all constraints have to be solved for each customers and it should not be forgotten that the goal is to find a solution, what is best enough, before the time for the calculation is up. This problem is introduced in the first chapter: form its basics, the Traveling Salesman Problem, using some theoretical and mathematical background it is shown, why is it so hard to optimize this problem, and although it is so hard, and there is no best algorithm known for huge number of customers, why is it a worth to deal with it. Just think about a huge transportation company with ten thousands of trucks, millions of customers: how much money could be saved if we would know the optimal path for all our packages.Although there is no best algorithm is known for this kind of optimization problems, we are trying to give an acceptable solution for it in the second and third chapter, where two algorithms are described: the Genetic Algorithm and the Simulated Annealing. Both of them are based on obtaining the processes of nature and material science. These algorithms will hardly ever be able to find the best solution for the problem, but they are able to give a very good solution in special cases within acceptable calculation time.In these chapters (2nd and 3rd) the Genetic Algorithm and Simulated Annealing is described in details, from their basis in the “real world” through their terminology and finally the basic implementation of them. The work will put a stress on the limits of these algorithms, their advantages and disadvantages, and also the comparison of them to each other.Finally, after all of these theories are shown, a simulation will be executed on an artificial environment of the VRP, with both Simulated Annealing and Genetic Algorithm. They will both solve the same problem in the same environment and are going to be compared to each other. The environment and the implementation are also described here, so as the test results obtained.Finally the possible improvements of these algorithms are discussed, and the work will try to answer the “big” question, “Which algorithm is better?”, if this question even exists.