904 resultados para Traffic actuated controllers.
Resumo:
Texas Department of Transportation, Austin
Resumo:
Texas Department of Transportation, Austin
Resumo:
Federal Highway Administration, Office of Operations Research and Development, McLean, Va.
Resumo:
Federal Highway Administration, Office of Research, Washington, D.C.
Resumo:
Federal Highway Administration, Office of Research, Washington, D.C.
Resumo:
Transportation Systems Center, Cambridge, Mass.
Resumo:
Transportation Systems Center, Cambridge, Mass.
Resumo:
Traffic Simulation models tend to have their own data input and output formats. In an effort to standardise the input for traffic simulations, we introduce in this paper a set of data marts that aim to serve as a common interface between the necessaary data, stored in dedicated databases, and the swoftware packages, that require the input in a certain format. The data marts are developed based on real world objects (e.g. roads, traffic lights, controllers) rather than abstract models and hence contain all necessary information that can be transformed by the importing software package to their needs. The paper contains a full description of the data marts for network coding, simulation results, and scenario management, which have been discussed with industry partners to ensure sustainability.
Resumo:
Federal Highway Administration, Office of Implementation, Washington, D.C.
Resumo:
Federal Highway Administration, Washington, D.C.
Resumo:
Federal Highway Administration, Washington, D.C.
Resumo:
Federal Highway Administration, Washington, D.C.
Resumo:
Federal Energy Administration, Office of Transportation Policy and Research, Washington, D.C.
Resumo:
This paper presents the study and experimental tests for the viability analysis of using multiple wireless technologies in urban traffic light controllers in a Smart City environment. Communication drivers, different types of antennas, data acquisition methods and data processing for monitoring the network are presented. The sensors and actuators modules are connected in a local area network through two distinct low power wireless networks using both 868 MHz and 2.4 GHz frequency bands. All data communications using 868 MHz go through a Moteino. Various tests are made to assess the most advantageous features of each communication type. The experimental results show better range for 868 MHz solutions, whereas the 2.4 GHz presents the advantage of self-regenerating the network and mesh. The different pros and cons of both communication methods are presented.