835 resultados para Tomita-Takesaki-Theorie KMS-Zustände Spektrale Deformation Liouville Operator
Resumo:
The present thesis is concerned with the study of a quantum physical system composed of a small particle system (such as a spin chain) and several quantized massless boson fields (as photon gasses or phonon fields) at positive temperature. The setup serves as a simplified model for matter in interaction with thermal "radiation" from different sources. Hereby, questions concerning the dynamical and thermodynamic properties of particle-boson configurations far from thermal equilibrium are in the center of interest. We study a specific situation where the particle system is brought in contact with the boson systems (occasionally referred to as heat reservoirs) where the reservoirs are prepared close to thermal equilibrium states, each at a different temperature. We analyze the interacting time evolution of such an initial configuration and we show thermal relaxation of the system into a stationary state, i.e., we prove the existence of a time invariant state which is the unique limit state of the considered initial configurations evolving in time. As long as the reservoirs have been prepared at different temperatures, this stationary state features thermodynamic characteristics as stationary energy fluxes and a positive entropy production rate which distinguishes it from being a thermal equilibrium at any temperature. Therefore, we refer to it as non-equilibrium stationary state or simply NESS. The physical setup is phrased mathematically in the language of C*-algebras. The thesis gives an extended review of the application of operator algebraic theories to quantum statistical mechanics and introduces in detail the mathematical objects to describe matter in interaction with radiation. The C*-theory is adapted to the concrete setup. The algebraic description of the system is lifted into a Hilbert space framework. The appropriate Hilbert space representation is given by a bosonic Fock space over a suitable L2-space. The first part of the present work is concluded by the derivation of a spectral theory which connects the dynamical and thermodynamic features with spectral properties of a suitable generator, say K, of the time evolution in this Hilbert space setting. That way, the question about thermal relaxation becomes a spectral problem. The operator K is of Pauli-Fierz type. The spectral analysis of the generator K follows. This task is the core part of the work and it employs various kinds of functional analytic techniques. The operator K results from a perturbation of an operator L0 which describes the non-interacting particle-boson system. All spectral considerations are done in a perturbative regime, i.e., we assume that the strength of the coupling is sufficiently small. The extraction of dynamical features of the system from properties of K requires, in particular, the knowledge about the spectrum of K in the nearest vicinity of eigenvalues of the unperturbed operator L0. Since convergent Neumann series expansions only qualify to study the perturbed spectrum in the neighborhood of the unperturbed one on a scale of order of the coupling strength we need to apply a more refined tool, the Feshbach map. This technique allows the analysis of the spectrum on a smaller scale by transferring the analysis to a spectral subspace. The need of spectral information on arbitrary scales requires an iteration of the Feshbach map. This procedure leads to an operator-theoretic renormalization group. The reader is introduced to the Feshbach technique and the renormalization procedure based on it is discussed in full detail. Further, it is explained how the spectral information is extracted from the renormalization group flow. The present dissertation is an extension of two kinds of a recent research contribution by Jakšić and Pillet to a similar physical setup. Firstly, we consider the more delicate situation of bosonic heat reservoirs instead of fermionic ones, and secondly, the system can be studied uniformly for small reservoir temperatures. The adaption of the Feshbach map-based renormalization procedure by Bach, Chen, Fröhlich, and Sigal to concrete spectral problems in quantum statistical mechanics is a further novelty of this work.
Resumo:
For a particular family of long-range potentials V, we prove that the eigenvalues of the indefinite Sturm–Liouville operator A = sign(x)(−Δ+V(x)) accumulate to zero asymptotically along specific curves in the complex plane. Additionally, we relate the asymptotics of complex eigenvalues to the two-term asymptotics of the eigenvalues of associated self-adjoint operators.
Resumo:
In this Letter we discuss a generalization for the thermal Bogoliubov transformation in the context of a Hermitian general SU(1,1) transformation generator. The TFD tilde conjugation rules are redefined using an appropriated Tomita-Takesaki modular operator. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Wir untersuchen die Mathematik endlicher, an ein Wärmebad gekoppelter Teilchensysteme. Das Standard-Modell der Quantenelektrodynamik für Temperatur Null liefert einen Hamilton-Operator H, der die Energie von Teilchen beschreibt, welche mit Photonen wechselwirken. Im Heisenbergbild ist die Zeitevolution des physikalischen Systems durch die Wirkung einer Ein-Parameter-Gruppe auf eine Menge von Observablen A gegeben: Diese steht im Zusammenhang mit der Lösung der Schrödinger-Gleichung für H. Um Zustände von A, welche das physikalische System in der Nähe des thermischen Gleichgewichts zur Temperatur T darstellen, zu beschreiben, folgen wir dem Ansatz von Jaksic und Pillet, eine Darstellung von A zu konstruieren. Die Vektoren in dieser Darstellung definieren die Zustände, die Zeitentwicklung wird mit Hilfe des Standard Liouville-Operators L beschrieben. In dieser Doktorarbeit werden folgende Resultate bewiesen bzw. hergeleitet: - die Konstuktion einer Darstellung - die Selbstadjungiertheit des Standard Liouville-Operators - die Existenz eines Gleichgewichtszustandes in dieser Darstellung - der Limes des physikalischen Systems für große Zeiten.
Resumo:
Die Themengebiete dieser Arbeit umfassen sowohl methodische Weiterentwicklungen im Rahmen der ab initio zweiter Ordnungsmethoden CC2 und ADC(2) als auch Anwendungen dieser Weiterentwick-lungen auf aktuelle Fragestellungen. Die methodischen Erweiterungen stehen dabei hauptsächlich im Zusammenhang mit Übergangsmomenten zwischen angeregten Zuständen. Durch die Implementie-rung der selbigen ist nun die Berechnung transienter Absorptionsspektren möglich. Die Anwendungen behandeln vorwiegend das Feld der organischen Halbleiter und deren photo-elektronische Eigen-schaften. Dabei spielen die bislang wenig erforschten Triplett-Excimere eine zentrale Rolle.rnDie Übergangsmomente zwischen angeregten Zuständen wurden in das Programmpaket TUR-BOMOLE implementiert. Dadurch wurde die Berechnung der Übergangsmomente zwischen Zustän-den gleicher Multiplizität (d.h. sowohl Singulett-Singulett- als auch Triplett-Triplett-Übergänge) und unterschiedlicher Multiplizität (also Singulett-Triplett-Übergänge) möglich. Als Erweiterung wurde durch ein Interface zum ORCA Programm die Berechnung von Spin-Orbit-Matrixelementen (SOMEs) implementiert. Des Weiteren kann man mit dieser Implementierung auch Übergänge in offenschaligen Systemen berechnen. Um den Speicherbedarf und die Rechenzeit möglichst gering zu halten wurde die resolution-of-the-identity (RI-) Näherung benutzt. Damit lässt sich der Speicherbedarf von O(N4) auf O(N3) reduzieren, da die mit O(N4) skalierenden Größen (z. B. die T2-Amplituden) sehr effizient aus RI-Intermediaten berechnet werden können und daher nicht abgespeichert werden müssen. Dadurch wird eine Berechnung für mittelgroße Moleküle (ca. 20-50 Atome) mit einer angemessenen Basis möglich.rnDie Genauigkeit der Übergangsmomente zwischen angeregten Zuständen wurde für einen Testsatz kleiner Moleküle sowie für ausgewählte größere organische Moleküle getestet. Dabei stellte sich her-aus, dass der Fehler der RI-Näherung sehr klein ist. Die Vorhersage der transienten Spektren mit CC2 bzw. ADC(2) birgt allerdings ein Problem, da diese Methoden solche Zustände nur sehr unzureichend beschreiben, welche hauptsächlich durch zweifach-Anregungen bezüglich der Referenzdeterminante erzeugt werden. Dies ist für die Spektren aus dem angeregten Zustand relevant, da Übergänge zu diesen Zuständen energetisch zugänglich und erlaubt sein können. Ein Beispiel dafür wird anhand eines Singulett-Singulett-Spektrums in der vorliegenden Arbeit diskutiert. Für die Übergänge zwischen Triplettzuständen ist dies allerdings weniger problematisch, da die energetisch niedrigsten Doppelan-regungen geschlossenschalig sind und daher für Tripletts nicht auftreten.rnVon besonderem Interesse für diese Arbeit ist die Bildung von Excimeren im angeregten Triplettzu-stand. Diese können aufgrund starker Wechselwirkungen zwischen den π-Elektronensystemen großer organischer Moleküle auftreten, wie sie zum Beispiel als organische Halbleiter in organischen Leucht-dioden eingesetzt werden. Dabei können die Excimere die photo-elktronischen Eigenschaften dieser Substanzen signifikant beeinflussen. Im Rahmen dieser Dissertation wurden daher zwei solcher Sys-teme untersucht, [3.3](4,4’)Biphenylophan und das Naphthalin-Dimer. Hierzu wurden die transienten Anregungsspektren aus dem ersten angeregten Triplettzustand berechnet und diese Ergebnisse für die Interpretation der experimentellen Spektren herangezogen. Aufgrund der guten Übereinstimmung zwischen den berechneten und den experimentellen Spektren konnte gezeigt werden, dass es für eine koplanare Anordnung der beiden Monomere zu einer starken Kopplung zwischen lokal angereg-ten und charge-transfer Zuständen kommt. Diese Kopplung resultiert in einer signifikanten energeti-schen Absenkung des ersten angeregten Zustandes und zu einem sehr geringen Abstand zwischen den Monomereinheiten. Dabei ist der angeregte Zustand über beide Monomere delokalisiert. Die star-ke Kopplung tritt bei einem intermolekularen Abstand ≤4 Å auf, was einem typischen Abstand in orga-nischen Halbleitern entspricht. In diesem Bereich kann man zur Berechnung dieser Systeme nicht auf die Förster-Dexter-Theorie zurückgreifen, da diese nur für den Grenzfall der schwachen Kopplung gültig ist.
Resumo:
The von Neumann-Liouville time evolution equation is represented in a discrete quantum phase space. The mapped Liouville operator and the corresponding Wigner function are explicitly written for the problem of a magnetic moment interacting with a magnetic field and the precessing solution is found. The propagator is also discussed and a time interval operator, associated to a unitary operator which shifts the energy levels in the Zeeman spectrum, is introduced. This operator is associated to the particular dynamical process and is not the continuous parameter describing the time evolution. The pair of unitary operators which shifts the time and energy is shown to obey the Weyl-Schwinger algebra. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
We are currently at the cusp of a revolution in quantum technology that relies not just on the passive use of quantum effects, but on their active control. At the forefront of this revolution is the implementation of a quantum computer. Encoding information in quantum states as “qubits” allows to use entanglement and quantum superposition to perform calculations that are infeasible on classical computers. The fundamental challenge in the realization of quantum computers is to avoid decoherence – the loss of quantum properties – due to unwanted interaction with the environment. This thesis addresses the problem of implementing entangling two-qubit quantum gates that are robust with respect to both decoherence and classical noise. It covers three aspects: the use of efficient numerical tools for the simulation and optimal control of open and closed quantum systems, the role of advanced optimization functionals in facilitating robustness, and the application of these techniques to two of the leading implementations of quantum computation, trapped atoms and superconducting circuits. After a review of the theoretical and numerical foundations, the central part of the thesis starts with the idea of using ensemble optimization to achieve robustness with respect to both classical fluctuations in the system parameters, and decoherence. For the example of a controlled phasegate implemented with trapped Rydberg atoms, this approach is demonstrated to yield a gate that is at least one order of magnitude more robust than the best known analytic scheme. Moreover this robustness is maintained even for gate durations significantly shorter than those obtained in the analytic scheme. Superconducting circuits are a particularly promising architecture for the implementation of a quantum computer. Their flexibility is demonstrated by performing optimizations for both diagonal and non-diagonal quantum gates. In order to achieve robustness with respect to decoherence, it is essential to implement quantum gates in the shortest possible amount of time. This may be facilitated by using an optimization functional that targets an arbitrary perfect entangler, based on a geometric theory of two-qubit gates. For the example of superconducting qubits, it is shown that this approach leads to significantly shorter gate durations, higher fidelities, and faster convergence than the optimization towards specific two-qubit gates. Performing optimization in Liouville space in order to properly take into account decoherence poses significant numerical challenges, as the dimension scales quadratically compared to Hilbert space. However, it can be shown that for a unitary target, the optimization only requires propagation of at most three states, instead of a full basis of Liouville space. Both for the example of trapped Rydberg atoms, and for superconducting qubits, the successful optimization of quantum gates is demonstrated, at a significantly reduced numerical cost than was previously thought possible. Together, the results of this thesis point towards a comprehensive framework for the optimization of robust quantum gates, paving the way for the future realization of quantum computers.
Resumo:
In this work we present a mapping between the classical solutions of the sine-Gordon, Liouville, λφ4 and other kinks in 1+1 dimensions. This is done by using an invariant quantity which relates the models. It is easily shown that this procedure is equivalent to that used to get the so called deformed solitons, as proposed recently by Bazeia et al. [Phys. Rev. D. 66 (2002) 101701(R)]. The classical equivalence is explored in order to relate the solutions of the corresponding models and, as a consequence, try to get new information about them. We discuss also the difficulties and consequences which appear when one tries to extend the deformation in order to take into account the quantum version of the models.
Resumo:
Deformation leads to a hardening of steel due to an increase in the density of dislocations and a reduction in their mobility, giving rise to a state of elevated residual stresses in the crystal lattice. In the microstructure, one observes an increase in the contribution of crystalline orientations which are unfavorable to the magnetization, as seen, for example, by a decrease in B(50), the magnetic flux density at a field of 50 A/cm. The present study was carried out with longitudinal strips of fully processed non-oriented (NO) electrical steel, with deformations up to 70% resulting from cold rolling in the longitudinal direction. With increasing plastic deformation, the value of B(50) gradually decreases until it reaches a minimum value, where it remains even for larger deformations. On the other hand, the coercive field H(c) continually increases. Magnetometry results and electron backscatter diffraction results are compared and discussed. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3560895]
Resumo:
Using a quasitoroidal set of coordinates with coaxial circular magnetic surfaces, Vlasov equation is solved for collisionless plasmas in drift approach and a perpendicular dielectric tensor is found for large aspect ratio tokamaks in a low frequency band. Taking into account plasma rotation and charge separation parallel electric field, it is found that an ion geodesic effect deform Alfveacuten wave continuum producing continuum minimum at the rational magnetic surfaces, which depends on the plasma rotation and poloidal mode numbers. In kinetic approach, the ion thermal motion defines the geodesic effect but the mode frequency also depends on electron temperature. A geodesic ion Alfveacuten mode predicted below the continuum minimum has a small Landau damping in plasmas with Maxwell distribution but the plasma rotation may drive instability.
Resumo:
Polymer-modified mortar is widely used to set ceramic tiles used as external finishing for high rise buildings in countries such as Brazil, Israel, Singapore and Portugal, mainly because it shows better bond strength and flexibility as compared to the traditional ones. Despite this, the results in the literature already published concerning the long-term performance of those composite mortars are is not conclusive. This paper, based on a laboratory program, compared the performance over time of four commercial polymer-modified adhesive mortars exposed to a typical Brazilian outdoor aging environment and to an indoor environment in terms of mortar flexibility and the bond strength to porcelain tiles. The results show that under laboratory condition, the mortars are more flexible and have higher bond strength than under external condition, and that there is an important correlation between the transversal deformability and the bond strength. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
An alternative approach for the analysis of arbitrarily curved shells is developed in this paper based on the idea of initial deformations. By `alternative` we mean that neither differential geometry nor the concept of degeneration is invoked here to describe the shell surface. We begin with a flat reference configuration for the shell mid-surface, after which the initial (curved) geometry is mapped as a stress-free deformation from the plane position. The actual motion of the shell takes place only after this initial mapping. In contrast to classical works in the literature, this strategy enables the use of only orthogonal frames within the theory and therefore objects such as Christoffel symbols, the second fundamental form or three-dimensional degenerated solids do not enter the formulation. Furthermore, the issue of physical components of tensors does not appear. Another important aspect (but not exclusive of our scheme) is the possibility to describe exactly the initial geometry. The model is kinematically exact, encompasses finite strains in a totally consistent manner and is here discretized under the light of the finite element method (although implementation via mesh-free techniques is also possible). Assessment is made by means of several numerical simulations. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Although the Hertz theory is not applicable in the analysis of the indentation of elastic-plastic materials, it is common practice to incorporate the concept of indenter/specimen combined modulus to consider indenter deformation. The appropriateness was assessed of the use of reduced modulus to incorporate the effect of indenter deformation in the analysis of the indentation with spherical indenters. The analysis based on finite element simulations considered four values of the ratio of the indented material elastic modulus to that of the diamond indenter, E/E(i) (0, 0.04, 0.19, 0.39), four values of the ratio of the elastic reduced modulus to the initial yield strength, E(r)/Y (0, 10, 20, 100), and two values of the ratio of the indenter radius to maximum total displacement, R/delta(max) (3, 10). Indenter deformation effects are better accounted for by the reduced modulus if the indented material behaves entirely elastically. In this case, identical load-displacement (P - delta) curves are obtained with rigid and elastic spherical indenters for the same elastic reduced modulus. Changes in the ratio E/E(i), from 0 to 0.39, resulted in variations lower than 5% for the load dimensionless functions, lower than 3% in the contact area, A(c), and lower than 5% in the ratio H/E(r). However, deformations of the elastic indenter made the actual radius of contact change, even in the indentation of elastic materials. Even though the load dimensionless functions showed only a little increase with the ratio E/E(i), the hardening coefficient and the yield strength could be slightly overestimated when algorithms based on rigid indenters are used. For the unloading curves, the ratio delta(e)/delta(max), where delta(e) is the point corresponding to zero load of a straight line with slope S from the point (P(max), delta(max)), varied less than 5% with the ratio E/E(i). Similarly, the relationship between reduced modulus and the unloading indentation curve, expressed by Sneddon`s equation, did not reveal the necessity of correction with the ratio E/E(i). The most affected parameter in the indentation curve, as a consequence of the indentation deformation, was the ratio between the residual indentation depth after complete unloading and the maximum indenter displacement, delta(r)/delta(max) (up to 26%), but this variation did not significantly decrease the capability to estimate hardness and elastic modulus based on the ratio of the residual indentation depth to maximum indentation depth, h(r)/h(max). In general, the results confirm the convenience of the use of the reduced modulus in the spherical instrumented indentation tests.
Resumo:
The present work shows measurements of the Magnetic Barkhausen Noise (MBN) in commercial AISI/SAE 1045 and ASTM 36 steel deformed samples. The correlation between the MBN root mean square, Barkhausen signal profile and MBN power spectrum with the plastic deformation is established. The results show that the power spectral density of the Barkhausen signal is more effective as nondestructive evaluator than root mean square of Barkhausen signal. The Outcomes also suggest the presence of unbalanced tensions between the surface and the bulk of sample due to the presence of plastic deformation.