879 resultados para Teacher of mathematics
Resumo:
Mode of access: Internet.
Resumo:
This study addresses the question of teacher educators’ conceptions of mathematics teacher education (MTE) in teacher colleges in Tanzania, and their thoughts on how to further develop it. The tension between exponents of content as opposed to pedagogy has continued to cause challenging conceptual differences, which also influences what teacher educators conceive as desirable in the development of this domain. This tension is connected to the dissatisfaction of parents and teachers with the failure of school mathematics. From this point of view, the overall aim was to identify and describe teacher educators’ various conceptions of MTE. Inspired by the debate among teacher educators about what the balance should be between subject matter and pedagogical knowledge, it was important to look at the theoretical faces of MTE. The theoretical background involved the review of what is visible in MTE, what is yet to be known and the challenges within the practice. This task revealed meanings, perspectives in MTE, professional development and assessment. To do this, two questions were asked, to which no clear solutions satisfactorily existed. The questions to guide the investigation were, firstly, what are teacher educators’ conceptions of MTE, and secondly, what are teacher educators’ thoughts on the development of MTE? The two questions led to the choice of phenomenography as the methodological approach. Against the guiding questions, 27 mathematics teacher educators were interviewed in relation to the first question, while 32 responded to an open-ended questionnaire regarding question two. The interview statements as well as the questionnaire responses were coded and analysed (classified). The process of classification generated patterns of qualitatively different ways of seeing MTE. The results indicate that MTE is conceived as a process of learning through investigation, fostering inspiration, an approach to learning with an emphasis on problem solving, and a focus on pedagogical knowledge and skills in the process of teaching and learning. In addition, the teaching and learning of mathematics is seen as subject didactics with a focus on subject matter and as an organized integration of subject matter, pedagogical knowledge and some school practice; and also as academic content knowledge in which assessment is inherent. The respondents also saw the need to build learner-educator relationships. Finally, they emphasized taking advantage of teacher educators’ neighbourhood learning groups, networking and collaboration as sustainable knowledge and skills sharing strategies in professional development. Regarding desirable development, teacher educators’ thoughts emphasised enhancing pedagogical knowledge and subject matter, and to be determined by them as opposed to conventional top-down seminars and workshops. This study has revealed various conceptions and thoughts about MTE based on teacher educators´ diverse history of professional development in mathematics. It has been reasonably substantiated that some teacher educators teach school mathematics in the name of MTE, hardly distinguishing between the role and purpose of the two in developing a mathematics teacher. What teacher educators conceive as MTE and what they do regarding the education of teachers of mathematics revealed variations in terms of seeing the phenomenon of interest. Within limits, desirable thoughts shed light on solutions to phobias, and in the same way low self-esteem and stigmatization call for the building of teacher educator-student teacher relationships.
Resumo:
Resumen basado en el de la publicaci??n
Resumo:
This qualitative case study explored three teacher candidates’ learning and enactment of discourse-focused mathematics teaching practices. Using audio and video recordings of their teaching practice this study aimed to identify the shifts in the way in which the teacher candidates enacted the following discourse practices: elicited and used evidence of student thinking, posed purposeful questions, and facilitated meaningful mathematical discourse. The teacher candidates’ written reflections from their practice-based coursework as well as interviews were examined to see how two mathematics methods courses influenced their learning and enactment of the three discourse focused mathematics teaching practices. These data sources were also used to identify tensions the teacher candidates encountered. All three candidates in the study were able to successfully enact and reflect on these discourse-focused mathematics teaching practices at various time points in their preparation programs. Consistency of use and areas of improvement differed, however, depending on various tensions experienced by each candidate. Access to quality curriculum materials as well as time to formulate and enact thoughtful lesson plans that supported classroom discourse were tensions for these teacher candidates. This study shows that teacher candidates are capable of enacting discourse-focused teaching practices early in their field placements and with the support of practice-based coursework they can analyze and reflect on their practice for improvement. This study also reveals the importance of assisting teacher candidates in accessing rich mathematical tasks and collaborating during lesson planning. More research needs to be explored to identify how specific aspects of the learning cycle impact individual teachers and how this can be used to improve practice-based teacher education courses.
Resumo:
This is a study of the implementation and impact of formative assessment strategies on the motivation and self-efficacy of secondary school mathematics students. An explanatory sequential mixed methods design was implemented where quantitative and qualitative data were collected and analyzed sequentially in 2 different phases. The first phase involved quantitative data from student questionnaires and the second phase involved qualitative data from individual student and teacher interviews. The findings of the study suggest that formative assessment is implemented in practice in diverse ways and is a process where the strategies are interconnected. Teachers experience difficulty in incorporating peer and self-assessment and perceive a need for exemplars. Key factors described as influencing implementation include teaching philosophies, interpretation of ministry documents, teachers’ experiences, leadership in administration and department, teacher collaboration, misconceptions of teachers, and student understanding of formative assessment. Findings suggest that overall, formative assessment positively impacts student motivation and self-efficacy, because feedback is provided which offers encouragement and recognition by highlighting the progress that has been made and what steps need to be taken to improve. However, students are impacted differently with some considerations including how students perceive mistakes and if they fear judgement. Additionally, the impact of formative assessment is influenced by the connection between self-efficacy and motivation, namely how well a student is doing is a source of both concepts.
Resumo:
In the 1960s occurred great changes in the general education and, specially in the mathematical teaching, throughout Brazil. Besides the Law Diretrizes e Bases for Education (law 4024/1961), such changes also was occurred by opposite educational movements. In one side, those ones that valorized the popular education and culture and, for the other side, the international agreements between universities and government organs, like SUDENE and MEC, with United States Agency for International Development (USAID). These agreements purposed the cultural alignment. In this article we will expose some of these agreements and their interference in two courses for teachers' education. These teachers taught mathematics for the elementary school, in Rio Grande do Norte.
Resumo:
[EN]Applying a CLIL methodological approach marks a shift in emphasis from language learning based on linguistic form and grammatical progression to a more ‘language acquisition’ one which takes account language functions. In this article we will study the elements of the “language of instruction” of the area of Maths in Secondary Education, by focusing on the analysis of the communicative functions, and the lexical and the cultural items present in the textbook in use. Our aim is to present the CLIL teacher with the linguistic and didactic implications that he or she should take into consideration when implementing the bilingual syllabuses with their students. In order to do that, we will present our conclusions emphasizing the need for coordination in different content areas, linguistic and communicative contents, between the foreign language teacher and the CLIL subject one.
Resumo:
In 2015 the Irish Mathematics Learning Support Network (IMLSN) commissioned a comprehensive audit of the extent and nature of mathematics learning support (MLS) provision on the island of Ireland. An online survey was sent to 32 institutions, including universities, institutes of technology, further education and teacher training colleges, and a 97% response rate was achieved. While the headline figure – 84% of institutions that responded to the survey provide MLS – sounds good, deeper analysis reveals that the true state of MLS is not so solid. For example, in 25% of institutions offering MLS, only five hours per week (at most) of physical MLS are available, while in 20% of institutions the service is provided by only one or two staff members. Furthermore, training of tutors is minimal or non-existent in at least half of the institutions offering MLS. The results provide an illuminating picture, however, identifying the true state of MLS in Ireland is beneficial only if it informs developments in the years ahead. This talk will present some of the findings of the survey in more depth along with conclusions and recommendations. Key among these is the need for institutions to recognise MLS as a vital element of mathematics teaching and learning strategy at third level and devote the necessary resources to facilitate the provision of a service which can grow and adapt to meet student requirements.
Resumo:
This article describes the purpose and activities of the project Promoting Mathematics Education in Rural Areas of Costa Rica. The activity has focused on two objectives. First, supporting and monitoring students who have expressed interest in studying a mathematics teacher. To achieve this, it has been working with students who have an ideal profile for the career, mainly from rural areas. The second objective is to conduct training workshops for high school in-service teachers, to strengthen and improve their knowledge in the area of mathematics. Among the results of the project, it can be highlighted a significant increase in the enrollment of students in the career of Mathematics Education in 2010 and 2011, and the training processes in the field of Real Functions of Real Variable and Geometry at different regional areas mostly rural as Aguirre, Sarapiquí, Coto, Buenos Aires, Limón, Cañas, Pérez Zeledón, Nicoya, Los Santos, Turrialba, Puriscal, Desamparados, San Carlos, Puntarenas, Limón, Liberia, Santa Cruz y Upala.
Resumo:
The goal of the present work is to develop some strategies based on research in neurosciences that contribute to the teaching and learning of mathematics. The interrelationship of education with the brain, as well as the relationship of cerebral structures with mathematical thinking was discussed. Strategies were developed taking into consideration levels that include cognitive, semiotic, language, affect and the overcoming of phobias to the subject. The fundamental conclusion was the imperative educational requirement in the near future of a new teacher, whose pedagogic formation must include the knowledge on the cerebral function, its structures and its implications to education, as well as a change in pedagogy and curricular structure in the teaching of mathematics.
Resumo:
The purpose of this paper is to raise a debate on the urgent need for teachers to generate innovative situations in the teaching-learning process, in the field of Mathematics, as a way for students to develop logical reasoning and research skills applicable to everyday situations. It includes some statistical data and possible reasons for the poor performance and dissatisfaction of students towards Mathematics. Since teachers are called to offer meaningful and functional learning experiences to students, in order to promote the pleasure of learning, teacher training should include experiences that can be put into practice by teachers in the education centers. This paper includes a work proposal for Mathematics Teaching to generate discussion, curiosity and logical reasoning in students, together with the Mathematical problem solving study.
Resumo:
Mathematical literacy in Portugal is very unsatisfactory in what concerns international standards. Even more disturbingly, the Azores archipelago ranks as one of the worst regions of Portugal in this respect. We reason that the popularisation of Mathematics through interactive exhibitions and activities can contribute actively to disseminate mathematical knowledge, increase awareness of the importance of Mathematics in today’s world and change its negative perception by the majority of the citizens. Although a significant investment has been undertaken by the local regional government in creating several science centres for the popularisation of Science, there is no centre for the popularisation of Mathematics. We present our first steps towards bringing Mathematics to unconventional settings by means of hands-on activities. We describe in some detail three activities. One activity has to do with applying trigonometry to measure distances in Astronomy, which can also be applied to Earth objects. Another activity concerns the presence of numerical patterns in the Azorean flora. The third activity explores geometrical patterns in the Azorean cultural heritage. It is our understanding that the implementation of these and other easy-to-follow and challenging activities will contribute to the awareness of the importance and beauty of Mathematics.
Resumo:
The present thesis is a contribution to the debate on the applicability of mathematics; it examines the interplay between mathematics and the world, using historical case studies. The first part of the thesis consists of four small case studies. In chapter 1, I criticize "ante rem structuralism", proposed by Stewart Shapiro, by showing that his so-called "finite cardinal structures" are in conflict with mathematical practice. In chapter 2, I discuss Leonhard Euler's solution to the Königsberg bridges problem. I propose interpreting Euler's solution both as an explanation within mathematics and as a scientific explanation. I put the insights from the historical case to work against recent philosophical accounts of the Königsberg case. In chapter 3, I analyze the predator-prey model, proposed by Lotka and Volterra. I extract some interesting philosophical lessons from Volterra's original account of the model, such as: Volterra's remarks on mathematical methodology; the relation between mathematics and idealization in the construction of the model; some relevant details in the derivation of the Third Law, and; notions of intervention that are motivated by one of Volterra's main mathematical tools, phase spaces. In chapter 4, I discuss scientific and mathematical attempts to explain the structure of the bee's honeycomb. In the first part, I discuss a candidate explanation, based on the mathematical Honeycomb Conjecture, presented in Lyon and Colyvan (2008). I argue that this explanation is not scientifically adequate. In the second part, I discuss other mathematical, physical and biological studies that could contribute to an explanation of the bee's honeycomb. The upshot is that most of the relevant mathematics is not yet sufficiently understood, and there is also an ongoing debate as to the biological details of the construction of the bee's honeycomb. The second part of the thesis is a bigger case study from physics: the genesis of GR. Chapter 5 is a short introduction to the history, physics and mathematics that is relevant to the genesis of general relativity (GR). Chapter 6 discusses the historical question as to what Marcel Grossmann contributed to the genesis of GR. I will examine the so-called "Entwurf" paper, an important joint publication by Einstein and Grossmann, containing the first tensorial formulation of GR. By comparing Grossmann's part with the mathematical theories he used, we can gain a better understanding of what is involved in the first steps of assimilating a mathematical theory to a physical question. In chapter 7, I introduce, and discuss, a recent account of the applicability of mathematics to the world, the Inferential Conception (IC), proposed by Bueno and Colyvan (2011). I give a short exposition of the IC, offer some critical remarks on the account, discuss potential philosophical objections, and I propose some extensions of the IC. In chapter 8, I put the Inferential Conception (IC) to work in the historical case study: the genesis of GR. I analyze three historical episodes, using the conceptual apparatus provided by the IC. In episode one, I investigate how the starting point of the application process, the "assumed structure", is chosen. Then I analyze two small application cycles that led to revisions of the initial assumed structure. In episode two, I examine how the application of "new" mathematics - the application of the Absolute Differential Calculus (ADC) to gravitational theory - meshes with the IC. In episode three, I take a closer look at two of Einstein's failed attempts to find a suitable differential operator for the field equations, and apply the conceptual tools provided by the IC so as to better understand why he erroneously rejected both the Ricci tensor and the November tensor in the Zurich Notebook.
Resumo:
This article offers a panorama of mathematics training for future teachers at pre-school level in Spain. With this goal in mind, this article is structured infour sections: where we come from, where we are, where we’re going and where we want to go. It offers, in short, a brief analysis that shows the efforts made to ensure there is sufficient academic and scientific rigour in teachers’ studies at pre-school in general and students’ mathematics education in particular. Together with a description of the progress made in recent years, it also raises some questions for all those involved in training future teachers for this educational stage
Resumo:
Abstract: In this article we analyze the key concept of Hilbert's axiomatic method, namely that of axiom. We will find two different concepts: the first one from the period of Hilbert's foundation of geometry and the second one at the time of the development of his proof theory. Both conceptions are linked to two different notions of intuition and show how Hilbert's ideas are far from a purely formalist conception of mathematics. The principal thesis of this article is that one of the main problems that Hilbert encountered in his foundational studies consisted in securing a link between formalization and intuition. We will also analyze a related problem, that we will call "Frege's Problem", form the time of the foundation of geometry and investigate the role of the Axiom of Completeness in its solution.