956 resultados para Suzuki–Miyaura cross-coupling reaction
Resumo:
A novel magnetic nanoparticle-supported oxime palladacycle catalyst was successfully prepared and characterized. The magnetically recoverable catalyst was evaluated in the room temperature Suzuki–Miyaura cross-coupling reaction of aryl iodides and bromides in aqueous media. The catalyst was shown to be highly active under phosphine-free and low Pd loading (0.3 mol%) conditions. The catalyst could be easily separated from the reaction mixture using an external magnet and reused for six consecutive runs without significant loss of activity.
Resumo:
A highly efficient Pd(OAc)(2)/guanidine aqueous system for the room temperature Suzuki cross-coupling reaction has been developed. The new water-soluble and air-stable catalyst Pd(OAc)(2)(.)(1f)(2) from Pd(OAc)(2) and 1,1,3,3-tetramethyl-2-n-butylguanidine (1f) was synthesized and characterized by X-ray crystallography. In the presence of Pd(OAc)(2)(.)(1f)(2), coupling of arylboronic acids with a wide range of aryl halides, including aryl iodides, aryl bromides, even activated aryl chlorides, was carried out smoothly in aqueous solvent to afford the cross-coupling products in good to excellent yields and high turnover numbers (TONs) (TONs up to 850 000 for the reaction of 1-iodo-4-nitrobenzene and phenylboronic acid). Furthermore, this mild protocol could tolerate a broad range of functional groups.
Resumo:
Cyclopalladated compounds derived from the ortho-metalation of benzylic tert-butyl thioethers are excellent catalyst precursors for the Suzuki cross-coupling reaction of aryl bromides and chlorides with phenylboronic acid under mild reaction conditions. A broad range of substrates and functional groups are tolerated in this protocol, and highly catalytic activity is attained.
Resumo:
A general method for the synthesis of triazoles containing selenium and tellurium was accomplished via a CuCAAC reaction between organic azides and a terminal triple bond, generated by in situ deprotection of the silyl group. The reaction tolerates alkyl and arylazides, with alkyl and aryl substituents directly bonded to the chalcogen atom. The products were readily functionalized by a nickel-catalyzed Negishi cross-coupling reaction, furnishing the aryl-heteroaryl products at the 4-position in good yields. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
An ultrasound-assisted synthesis of functionalized vinylic chlorides is described by palladium-catalyzed cross-coupling reaction of potassium aryltrifluoroborate salts and (Z)-2-chloro vinylic tellurides. This procedure offers easy access to vinylic chlorides architecture that contains sterically demanding groups in good yields. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The regioselective formation of highly branched dienes is a challenging task. Design and exploration of alternative working models to achieve such a regioselectivity to accomplish highly branched dienes is considered to be a historical advancement of Heck reaction to construct branched dienes. On the basis of the utility of carbene transfer reactions, in the reaction of hydrazones with Pd(II) under oxidative conditions, we envisioned obtaining a Pd-bis-carbene complex with alpha-hydrogens, which can lead to branched dienes. Herein, we report a novel Pd-catalyzed selective coupling reaction of hydrazones in the presence of t-BuOLi and benzoquinone to form the corresponding branched dienes. The utility of the Pd catalyst for the cross-coupling reactions for synthesizing branched conjugated dienes is rare. The reaction is very versatile and compatible with a variety of functional groups and is useful in synthesizing heterocyclic molecules. We anticipate that this Pd-catalyzed cross-coupling reaction will open new avenues for synthesizing useful compounds.
Resumo:
The advantages of bimetallic nanoparticles as C - C coupling catalysts are discussed, and a simple, bottom- up synthesis method of core - shell Ni - Pd clusters is presented. This method combines electrochemical and 'wet chemical' techniques, and enables the preparation of highly monodispersed structured bimetallic nanoclusters. The double- anode electrochemical cell is described in detail. The core - shell Ni - Pd clusters were then applied as catalysts in the Hiyama cross- coupling reaction between phenyltrimethoxysilane and various haloaryls. Good product yields were obtained with a variety of iodo- and bromoaryls. We found that, for a fixed amount of Pd atoms, the core - shell clusters outperform both the monometallic Pd clusters and the alloy bimetallic Ni - Pd ones. THF is an excellent solvent for this process, with less than 2% homocoupling by-product. The roles of the stabiliser and the solvent are discussed.
Resumo:
We here report the preparation of supported palladium nanoparticles (NPs) stabilized by pendant phosphine groups by reacting a palladium complex containing the ligand 2-(diphenylphosphino)benzaldehyde with an amino-functionalized silica surface The Pd nanocatalyst is active for Suzuki cross-coupling reaction avoiding any addition of other sources of phosphine ligands The Pd intermediates and Pd NPs were characterized by solid-state nuclear magnetic resonance and transmission electron microscopy techniques The synthetic method was also applied to prepare magnetically recoverable Pd NPs leading to a catalyst that could be reused for up to 10 recycles In summary we gathered the advantages of heterogeneous catalysis magnetic separation and enhanced catalytic activity of palladium promoted by phosphine ligands to synthesize a new catalyst for Suzuki cross-coupling reactions The Pd NP catalyst prepared on the phosphine-functionalized support was more active and selective than a similar Pd NP catalyst prepared on an amino-functionalized support (C) 2010 Elsevier Inc All rights reserved
Resumo:
We present a general protocol for the cross-coupling reaction of Grignard reagents and organic tellurides. Aryl Grignard reagents react stereospecifically with vinyl tellurides in the presence of a catalytic amount of manganese (II) chloride and copper (I) iodide to produce good yields of the corresponding cross-coupling products. (C) 2012 Published by Elsevier Ltd.
Resumo:
C–C bond-forming, cross-coupling reactions of organohalides with nucleophilic compounds, catalysed by palladium, are amongst the most important chemical reactions available to the synthetic chemist. The intimate mechanisms of these reactions, involving Pd0/PdII redox steps, have been of great historical interest and continue to be so. The myriad of possible mechanisms is reviewed in this chapter. The interplay of mononuclear Pd species with higher order Pd species, e.g. nanoclusters/nanoparticles are considered as being equally important in cross-coupling reaction mechanisms. A focus is placed on trichotomic behaviour of cross-coupling catalytic manifolds, from homogeneous to hybrid homogeneous–heterogeneous to truly heterogeneous behaviour. For the latter, surface chemistry and metal atom leaching (and various experimental techniques) are broadly discussed. It is now clear that mechanism for general cross‐coupling reactions, that is as presented to undergraduate students studying Chemistry degrees across the world, is undoubtedly more complex than first thought. New opportunities for catalyst design have therefore emerged in the area of Pd nanoparticles and nanocatalysis, with some wonderful applications especially in chemical biology, providing a snapshot of what the future might hold.
Resumo:
A highly efficient palladium catalyzed decarboxylative allylic rearrangement of alloc indoles has been developed. This can also be combined with a Suzuki–Miyaura cross-coupling reaction in a single pot transformation. Substituted alloc groups and benzylic variants have also been demonstrated alongside promising initial results on the enantioselective variant.
Resumo:
An aerobic oxidative cross-dehydrogenative coupling reaction between sp(3) C-H and sp(2) C-H bonds is developed by employing a vanadium catalyst (10 mol%) in an aqueous medium using molecular oxygen as the oxidant. This environmentally benign strategy exhibits larger substrate scope and shows high regioselectivity.
Resumo:
Phosphorylation of amines, alcohols, and sulfoximines are accomplished using molecular iodine as a catalyst and H2O2 as the sole oxidant under mild reaction conditions. This method provides an easy route for synthesizing a variety of phosphoramidates, phosphorus triesters and sulfoximine-derived phosphoramidates which are of biological importance.
Resumo:
Tetrabutyl ammonium iodide (TBAI) catalyzed alpha-aminoxylation of ketones using aq. TBHP as an oxidant has been accomplished. We have shown that the CDC (cross dehydrogenative coupling) reactions of ketones with N-hydroxyimidates such as N-hydroxysuccinimide (NHSI), N-hydroxyphthalimide (NHPI), N-hydroxybenzotriazole (HOBt) and 1-hydroxy-7-azabenzotriazole (HOAt) lead to the corresponding oxygenated products in good to moderate yields. The application of this method has been demonstrated by transforming a few coupled products into synthetically useful intermediates and products.