998 resultados para Stopping power (Nuclear physics)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Prepared under the auspices of the Atomic Energy Commission Contract AT(04-3)-136."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Non-linearities in the electronic stopping power of light projectiles in bulk Al and LiF are addressed from first principles using time-evolving time-dependent density functional theory. In the case of Al, the agreement of the calculations with experiments for H and He projectiles is fair, but a recently observed transition for He from one value of the electronic friction coefficient to a higher value at v ~ 0.3 a.u. is not reproduced by the calculations. For LiF, better accuracy is obtained as compared with previously published simulations, albeit the threshold remains overestimated. © 2013 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work, we report experimental results of He stopping power into Al2O3 films by using both transmission and Rutherford backscattering techniques. We have performed measurements along a wide energy range, from 60 to 3000 key, covering the maximum stopping range. The results of this work are compared with previously published dap-, showing a good agreement for the high-energy range, but evidencing discrepancies in the low-energy region. The existing theories follow the same tendency: good theoretical-experimental agreement for higher energies, but they failed to reproduce previous and present results in the low energy regime. On the other hand it is interesting to note that the semi-empirical SRIM code reproduces quite well the present data. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitrogen sputtering yields as high as 104 atoms/ion, are obtained by irradiating N-rich-Cu3N films (N concentration: 33 ± 2 at.%) with Cu ions at energies in the range 10?42 MeV. The kinetics of N sputtering as a function of ion fluence is determined at several energies (stopping powers) for films deposited on both, glass and silicon substrates. The kinetic curves show that the amount of nitrogen release strongly increases with rising irradiation fluence up to reaching a saturation level at a low remaining nitrogen fraction (5?10%), in which no further nitrogen reduction is observed. The sputtering rate for nitrogen depletion is found to be independent of the substrate and to linearly increase with electronic stopping power (Se). A stopping power (Sth) threshold of ?3.5 keV/nm for nitrogen depletion has been estimated from extrapolation of the data. Experimental kinetic data have been analyzed within a bulk molecular recombination model. The microscopic mechanisms of the nitrogen depletion process are discussed in terms of a non-radiative exciton decay model. In particular, the estimated threshold is related to a minimum exciton density which is required to achieve efficient sputtering rates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electronic stopping power of H and He moving through gold is obtained to high accuracy using time-evolving density-functional theory, thereby bringing usual first principles accuracies into this kind of strongly coupled, continuum nonadiabatic processes in condensed matter. The two key unexplained features of what observed experimentally have been reproduced and understood: (i)The nonlinear behavior of stopping power versus velocity is a gradual crossover as excitations tail into the d-electron spectrum; and (ii)the low-velocity H/He anomaly (the relative stopping powers are contrary to established theory) is explained by the substantial involvement of the d electrons in the screening of the projectile even at the lowest velocities where the energy loss is generated by s-like electron-hole pair formation only. © 2012 American Physical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High power lasers have proven being capable to produce high energy γ-rays, charged particles and neutrons, and to induce all kinds of nuclear reactions. At ELI, the studies with high power lasers will enter for the first time into new domains of power and intensities: 10 PW and 10^23 W/cm^2. While the development of laser based radiation sources is the main focus at the ELI-Beamlines pillar of ELI, at ELI-NP the studies that will benefit from High Power Laser System pulses will focus on Laser Driven Nuclear Physics (this TDR, acronym LDNP, associated to the E1 experimental area), High Field Physics and QED (associated to the E6 area) and fundamental research opened by the unique combination of the two 10 PW laser pulses with a gamma beam provided by the Gamma Beam System (associated to E7 area). The scientific case of the LDNP TDR encompasses studies of laser induced nuclear reactions, aiming for a better understanding of nuclear properties, of nuclear reaction rates in laser-plasmas, as well as on the development of radiation source characterization methods based on nuclear techniques. As an example of proposed studies: the promise of achieving solid-state density bunches of (very) heavy ions accelerated to about 10 MeV/nucleon through the RPA mechanism will be exploited to produce highly astrophysical relevant neutron rich nuclei around the N~126 waiting point, using the sequential fission-fusion scheme, complementary to any other existing or planned method of producing radioactive nuclei.

The studies will be implemented predominantly in the E1 area of ELI-NP. However, many of them can be, in a first stage, performed in the E5 and/or E4 areas, where higher repetition laser pulses are available, while the harsh X-ray and electromagnetic pulse (EMP) environments are less damaging compared to E1.

A number of options are discussed through the document, having an important impact on the budget and needed resources. Depending on the TDR review and subsequent project decisions, they may be taken into account for space reservation, while their detailed design and implementation will be postponed.

The present TDR is the result of contributions from several institutions engaged in nuclear physics and high power laser research. A significant part of the proposed equipment can be designed, and afterwards can be built, only in close collaboration with (or subcontracting to) some of these institutions. A Memorandum of Understanding (MOU) is currently under preparation with each of these key partners as well as with others that are interested to participate in the design or in the future experimental program.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hadron therapy is a promising technique to treat deep-seated tumors. For an accurate treatment planning, the energy deposition in the soft and hard human tissue must be well known. Water has been usually employed as a phantom of soft tissues, but other biomaterials, such as hydroxyapatite (HAp), used as bone substitute, are also relevant as a phantom for hard tissues. The stopping power of HAp for H+ and He+ beams has been studied experimentally and theoretically. The measurements have been done using the Rutherford backscattering technique in an energy range of 450-2000 keV for H+ and of 400-5000 keV for He+ projectiles. The theoretical calculations are based in the dielectric formulation together with the MELF-GOS (Mermin Energy-Loss Function – Generalized Oscillator Strengths) method [1] to describe the target excitation spectrum. A quite good agreement between the experimental data and the theoretical results has been found. The depth dose profile of H+ and He+ ion beams in HAp has been simulated by the SEICS (Simulation of Energetic Ions and Clusters through Solids) code [2], which incorporates the electronic stopping force due to the energy loss by collisions with the target electrons, including fluctuations due to the energy-loss straggling, the multiple elastic scattering with the target nuclei, with their corresponding nuclear energy loss, and the dynamical charge-exchange processes in the projectile charge state. The energy deposition by H+ and He+ as a function of the depth are compared, at several projectile energies, for HAp and liquid water, showing important differences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis examines the interrelationship and dynamics between the Indian United Progressive Alliance government’s foreign policy and its nuclear weapons policy. The purpose of the study is to situate nuclear policy within a foreign policy framework, and the fundamental research problem is thus how does the Indian nuclear policy reflect and respond to the Indian foreign policy? The study examines the intentions in the Indian foreign and nuclear policies, and asks whether these intentions are commensurable or incommensurable. Moreover, the thesis asks whether the UPA government differs from its predecessors, most notably the Bharatiya Janata Party-led National Democratic Alliance government in its foreign and nuclear policies. Answers to these questions are based on the interpretation of political texts and speeches as suggested by Quentin Skinner’s notion of meaning3, what does a writer or speaker mean by what he or she says in a given text, and by J.L. Austin’s speech act theory. This linguistic perspective and the approach of intertextualizing, place the political acts within their contingent intellectual and political contexts. The notion of strategic culture is therefore introduced to provide context for these juxtapositions. The thesis firstly analyses the societal, historical and intellectual context of India’s foreign and nuclear policy. Following from this analysis the thesis then examines the foreign and nuclear policies of Prime Minister Manmo-han Singh’s UPA government. This analysis focuses on the texts, speeches and statements of Indian authorities between 2004 and 2008. This study forwards the following claims: firstly, the UPA Government conducts a foreign policy that is mainly and explicitly inclusive, open and enhancing, and it conducts a nuclear policy that is mainly and implicitly excluding, closed and protective. Secondly, despite the fact that the notion of military security is widely appreciated and does not, as such, necessarily collide with foreign policy, the UPA Government conducts a nuclear policy that is incommensurable with its foreign policy. Thirdly, the UPA Gov-ernment foreign and nuclear policies are, nevertheless, commensurable re-garding their internal intentions. Finally, the UPA Government is conduct-ing a nuclear policy that is gradually leading India towards having a triad of nuclear weapons with various platforms and device designs and a function-ing and robust command and control system encompassing political and military planning, decision-making and execution. Regarding the question of the possible differences between the UPA and NDA governments this thesis claims that, despite their different ideological roots and orientations in domestic affairs, the Indian National Congress Party conducts, perhaps surprisingly, quite a similar foreign and nuclear policy to the Bharatiya Janata Party.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pulse-height and time-of-flight methods have been used to measure the electronic stopping cross sections for projectiles of 12C, 16O, 19F, 23Na, 24Mg, and 27Al, slowing in helium, neon, argon, krypton, and xenon. The ion energies were in the range 185 keV ≤ E ≤ 2560 keV.

A semiempirical calculation of the electronic stopping cross section for projectiles with atomic numbers between 6 and 13 passing through the inert gases has been performed using a modification of the Firsov model. Using Hartree-Slater-Fock orbitals, and summing over the losses for the individual charge states of the projectiles, good agreement has been obtained with the experimental data. The main features of the stopping cross section seen in the data, such as the Z1 oscillation and the variation of the velocity dependence on Z1 and Z2, are present in the calculation. The inclusion of a modified form of the Bethe-Bloch formula as an additional term allows the increase of the velocity dependence for projectile velocities above vo to be reproduced in the calculation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We briefly introduce the current status and progress in the field of radioactive ion beam physics and the study of super-heavy nuclei. Some important problems and research directions are outlined, such as the sub-barrier fusion reaction, the direct reaction at Fermi energy and high energies, the property of nuclei at drip-lines, new magic numbers and new collective motion modes for unstable nuclei and the synthesis and study of the super-heavy nuclei.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the commissioning of HIRFL-CSR, HIRFL can provide heavy ion beams with energy covering the range of several MeV/u to 1 GeV/u. In this talk, the experiments on nuclear physics at different energies to be carried out with different experimental setups at HIRFL will be introduced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

HIRFL is an accelerator complex consisting of 3 accelerators, 2 radioactive beams lines, 1 storage rings and a number of experimental setups. The research activities at HIRFL cover the fields of radio-biology, material science, atomic physics, and nuclear physics. This report mainly concentrates on the experiments of nuclear physics with the existing and planned experimental setups such as SHANS, RIBLL1, ETF, CSRe, PISA and HPLUS at HIRFL.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nuclear matter calculations with realistic nucleon-nucleon potentials present a general scaling between the nucleon-nucleus binding energy, the corresponding saturation density, and the triton binding energy. The Thomas-Efimov three-body effect implies in correlations among low-energy few-body and many-body observables. It is also well known that, by varying the short-range repulsion, keeping the two-nucleon information (deuteron and scattering) fixed, the four-nucleon and three-nucleon binding energies lie on a very narrow band known as a Tjon line. By looking for a universal scaling function connecting the proper scales of the few-body system with those of the many-body system, we suggest that the general nucleus-nucleon scaling mechanism is a manifestation of a universal few-body effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Renormalized fixed-point Hamiltonians are formulated for systems described by interactions that originally contain point-like singularities (as the Dirac-delta and/or its derivatives). They express the renormalization group invariance of quantum mechanics. The present approach for the renormalization scheme relies on a subtracted T-matrix equation.