847 resultados para Step-stress accelerated life test


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accelerated life testing (ALT) is widely used to obtain reliability information about a product within a limited time frame. The Cox s proportional hazards (PH) model is often utilized for reliability prediction. My master thesis research focuses on designing accelerated life testing experiments for reliability estimation. We consider multiple step-stress ALT plans with censoring. The optimal stress levels and times of changing the stress levels are investigated. We discuss the optimal designs under three optimality criteria. They are D-, A- and Q-optimal designs. We note that the classical designs are optimal only if the model assumed is correct. Due to the nature of prediction made from ALT experimental data, attained under the stress levels higher than the normal condition, extrapolation is encountered. In such case, the assumed model cannot be tested. Therefore, for possible imprecision in the assumed PH model, the method of construction for robust designs is also explored.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A quantitative temperature accelerated life test on sixty GaInP/GaInAs/Ge triple-junction commercial concentrator solar cells is being carried out. The final objective of this experiment is to evaluate the reliability, warranty period, and failure mechanism of high concentration solar cells in a moderate period of time. The acceleration of the degradation is realized by subjecting the solar cells at temperatures markedly higher than the nominal working temperature under a concentrator Three experiments at three different temperatures are necessary in order to obtain the acceleration factor which relates the time at the stress level with the time at nominal working conditions. . However, up to now only the test at the highest temperature has finished. Therefore, we can not provide complete reliability information but we have analyzed the life data and the failure mode of the solar cells inside the climatic chamber at the highest temperature. The failures have been all of them catastrophic. In fact, the solar cells have turned into short circuits. We have fitted the failure distribution to a two parameters Weibull function. The failures are wear-out type. We have observed that the busbar and the surrounding fingers are completely deteriorate

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Specific tests to assess reliability of high luminosity AlInGaP LED for outdoor applications are needed. In this paper tests to propose a model involving three parameters: temperature, humidity and current have been carried out. Temperature, humidity and current accelerated model has been proposed to evaluate the reliability of this type of LED. Degradation and catastrophic failure mechanisms have been analyzed. Finally we analyze the effect of serial resistance in power luminosity degradation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A temperature accelerated life test on concentrator lattice mismatched Ga0.37In0.63P/Ga0.83In0.17As/Ge triple-junction solar cells-on-carrier is being carried out. The solar cells have been tested at three different temperatures: 125, 145 and 165°C and the nominal photo-current condition (500X) is emulated by injecting current in darkness. The final objective of these tests is to evaluate the reliability, warranty period, and failure mechanism of these solar cells in a moderate period of time. Up to now only the test at 165°C has finished. Therefore, we cannot provide complete reliability information, but we have carried out preliminary data and failure analysis with the current results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose - The purpose of this paper is to present designs for an accelerated life test (ALT). Design/methodology/approach - Bayesian methods and simulation Monte Carlo Markov Chain (MCMC) methods were used. Findings - In the paper a Bayesian method based on MCMC for ALT under EW distribution (for life time) and Arrhenius models (relating the stress variable and parameters) was proposed. The paper can conclude that it is a reasonable alternative to the classical statistical methods since the implementation of the proposed method is simple, not requiring advanced computational understanding and inferences on the parameters can be made easily. By the predictive density of a future observation, a procedure was developed to plan ALT and also to verify if the conformance fraction of the manufactured process reaches some desired level of quality. This procedure is useful for statistical process control in many industrial applications. Research limitations/implications - The results may be applied in a semiconductor manufacturer. Originality/value - The Exponentiated-Weibull-Arrhenius model has never before been used to plan an ALT. © Emerald Group Publishing Limited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A temperature accelerated life test on commercial concentrator lattice-matched GaInP/GaInAs/Ge triple-junction solar cells has been carried out. The solar cells have been tested at three different temperatures: 119, 126 and 164 °C and the nominal photo-current condition (820 X) has been emulated by injecting current in darkness. All the solar cells have presented catastrophic failures. The failure distributions at the three tested temperatures have been fitted to an Arrhenius-Weibull model. An Arrhenius activation energy of 1.58 eV was determined from the fit. The main reliability functions and parameters (reliability function, instantaneous failure rate, mean time to failure, warranty time) of these solar cells at the nominal working temperature (80 °C) have been obtained. The warranty time obtained for a failure population of 5 % has been 69 years. Thus, a long-term warranty could be offered for these particular solar cells working at 820 X, 8 hours per day at 80 °C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work the failure analysis carried out in III-V concentrator multijunction solar cells after a temperature accelerated life test is presented. All the failures appeared have been catastrophic since all the solar cells turned into low shunt resistances. A case study in failure analysis based on characterization by optical microscope, SEM, EDX, EQE and XPS is presented in this paper, revealing metal deterioration in the bus bar and fingers as well as cracks in the semiconductor structure beneath or next to the bus bar. In fact, in regions far from the bus bar the semiconductor structure seems not to be damaged. SEM images have dismissed the presence of metal spikes inside the solar cell structure. Therefore, we think that for these particular solar cells, failures appear mainly as a consequence of a deficient electrolytic growth of the front metallization which also results in failures in the semiconductor structure close to the bus bars.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: This study evaluated the reliability and failure modes of implants with a microthreaded or smooth design at the crestal region, restored with screwed or cemented crowns. The postulated null hypothesis was that the presence of microthreads in the implant cervical region would not result in different reliability and strength to failure than smooth design, regardless of fixation method, when subjected to step-stress accelerated life-testing (SSALT) in water. Materials and methods: Eighty four dental implants (3.3 × 10 mm) were divided into four groups (n = 21) according to implant macrogeometric design at the crestal region and crown fixation method: Microthreads Screwed (MS); Smooth Screwed (SS); Microthreads Cemented (MC), and Smooth Cemented (SC). The abutments were torqued to the implants and standardized maxillary central incisor metallic crowns were cemented (MC, SC) or screwed (MS, SS) and subjected to SSALT in water. The probability of failure versus cycles (90% two-sided confidence intervals) was calculated and plotted using a power law relationship for damage accumulation. Reliability for a mission of 50,000 cycles at 150 N (90% 2-sided confidence intervals) was calculated. Differences between final failure loads during fatigue for each group were assessed by Kruskal-Wallis along with Benferroni's post hoc tests. Polarized-light and scanning electron microscopes were used for failure analyses. Results: The Beta (β) value (confidence interval range) derived from use level probability Weibull calculation of 1.30 (0.76-2.22), 1.17 (0.70-1.96), 1.12 (0.71-1.76), and 0.52 (0.30-0.89) for groups MC, SC, MS, and SS respectively, indicated that fatigue was an accelerating factor for all groups, except for SS. The calculated reliability was higher for SC (99%) compared to MC (87%). No difference was observed between screwed restorations (MS - 29%, SS - 43%). Failure involved abutment screw fracture for all groups. The cemented groups (MC, SC) presented more abutment and implant fractures. Significantly higher load to fracture values were observed for SC and MC relative to MS and SS (P < 0.001). Conclusion: Since reliability and strength to failure was higher for SC than for MC, our postulated null hypothesis was rejected. © 2012 John Wiley & Sons A/S.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Biological and mechanical implant-abutment connection complications and failures are still present in clinical practice, frequently compromising oral function. The purpose of this study was to evaluate the reliability and failure modes of anterior single-unit restorations in internal conical interface (ICI) implants using step-stress accelerated life testing (SSALT). Materials and methods: Forty-two ICI implants were distributed in two groups (n = 21 each): group AT-OsseoSpeed™ TX (Astra Tech, Waltham, MA, USA); group SV-Duocon System Line, Morse Taper (Signo Vinces Ltda., Campo Largo, PR, Brazil). The corresponding abutments were screwed to the implants and standardized maxillary central incisor metal crowns were cemented and subjected to SSALT in water. Use-level probability Weibull curves and reliability for a mission of 50,000 cycles at 200 N were calculated. Differences between groups were assessed by Kruskal-Wallis along with Bonferroni's post-hoc tests. Polarized-light and scanning electron microscopes were used for failure analyses. Results: The Beta (β) value derived from use level probability Weibull calculation was 1.62 (1.01-2.58) for group AT and 2.56 (1.76-3.74) for group SV, indicating that fatigue was an accelerating factor for failure of both groups. The reliability for group AT was 0.95 and for group SV was 0.88. Kruskal-Wallis along with Bonferroni's post-hoc tests showed no significant difference between the groups tested (P > 0.27). In all specimens of both groups, the chief failure mode was abutment fracture at the conical joint region and screw fracture at neck's region. Conclusions: Reliability was not different between investigated ICI connections supporting maxillary incisor crowns. Failure modes were similar. © 2012 John Wiley & Sons A/S.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: This study aimed to evaluate the survival probability of four narrow-diameter implant systems when subjected to fatigue loading. Materials and Methods: Seventy-two narrow-diameter implants to be restored with single-unit crowns were divided into four groups (n = 18): Astra Tech (3.5-mm diameter), with a standard connection (ASC); BioHorizon (3.4-mm diameter), with a standard connection (BSC); Intra-Lock (3.4-mm diameter), with a standard multilobular connection (ISC); and Intra-Lock (3.4-diameter), with a modified square connection (IMC). The corresponding abutments were screwed onto the implants, and standardized metal crowns (maxillary central incisors) were cemented and subjected to step-stress accelerated life testing in water. Use-level probability Weibull curves and reliability for 100,000 cycles at 150 and 200 N (90% two-sided confidence intervals) were calculated. Polarized light and scanning electron microscopes were used to access the failure modes. Results: The calculated survival probability for 100,000 cycles at 150 N was approximately 93% in group ASC, 98% in group BSC, 94% in group ISC, and 99% in group IMC. At 200 N, the survival rate was estimated to be approximately < 0.1% for ASC, 77% for BSC, 34% for ISC, and 93% for IMC. Abutment screw fracture was the main failure mode for all groups. Conclusions: Although the probability of survival was not significantly different among systems at a load of 150 N, a significant decrease was observed at 200 N for all groups except IMC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To evaluate and compare the reliability of implant-supported single crowns cemented onto abutments retained with coated (C) or noncoated (NC) screws and onto platform-switched abutments with coated screws. Materials and Methods: Fifty-four implants (DT Implant 4-mm Standard Platform, Intra-Lock International) were divided into three groups (n = 18 each) as follows: matching-platform abutments secured with noncoated abutment screws (MNC); matching-platform abutments tightened with coated abutment screws (MC); and switched-platform abutments secured with coated abutment screws (SC). Screws were characterized by scanning electron microscopy and x-ray photoelectron spectroscopy (XPS). The specimens were subjected to step-stress accelerated life testing. Use-level probability Weibull curves and reliability for 100,000 cycles at 200 N and 300 N (90% two-sided confidence intervals) were calculated. Polarized light and scanning electron microscopes were used for fractographic analysis. Results: Scanning electron microscopy revealed differences in surface texture; noncoated screws presented the typical machining grooves texture, whereas coated screws presented a plastically deformed surface layer. XPS revealed the same base components for both screws, with the exception of higher degrees of silicon in the SiO2 form for the coated samples. For 100,000 cycles at 300 N, reliability values were 0.06 (0.01 to 0.16), 0.25 (0.09 to 0.45), and 0.25 (0.08 to 0.45), for MNC, MC, and SC, respectively. The most common failure mechanism for MNC was fracture of the abutment screw, followed by bending, or its fracture, along with fracture of the abutment or implant. Coated abutment screws most commonly fractured along with the abutment, irrespective of abutment type. Conclusion: Reliability was higher for both groups with the coated screw than with the uncoated screw. Failure modes differed between coated and uncoated groups.