972 resultados para Spherical space forms


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we show for which odd-dimensional homotopy spherical space forms the Borsuk-Ulam theorem holds. These spaces are the quotient of a homotopy odd-dimensional sphere by a free action of a finite group. Also, the types of these spaces which admit a free involution are characterized. The case of even-dimensional homotopy spherical space forms is basically known.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Let G = Z/a x(mu) (Z/b x TL(2)(F(p))) and X(n) be an n-dimensional CW-complex with the homotopy type of the n-sphere. We determine the automorphism group Aut(G) and then compute the number of distinct homotopy types of spherical space forms with respect to free and cellular G-actions on all CW-complexes X(2dn - 1), where 2d is a period of G. Next, the group E(X(2dn - 1)/alpha) of homotopy self-equivalences of spherical space forms X(2dn - 1)/alpha, associated with such G-actions alpha on X(2dn - 1) are studied. Similar results for the rest of finite periodic groups have been obtained recently and they are described in the introduction. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We obtain an explicit cellular decomposition of the quaternionic spherical space forms, manifolds of positive constant curvature that are factors of an odd sphere by a free orthogonal action of a generalized quaternionic group. The cellular structure gives and explicit description of the associated cellular chain complex of modules over the integral group ring of the fundamental group. As an application we compute the Whitehead torsion of these spaces for any representation of the fundamental group. © 2012 Springer Science+Business Media B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper tackles the path planning problem for oriented vehicles travelling in the non-Euclidean 3-Dimensional space; spherical space S3. For such problem, the orientation of the vehicle is naturally represented by orthonormal frame bundle; the rotation group SO(4). Orthonormal frame bundles of space forms coincide with their isometry groups and therefore the focus shifts to control systems defined on Lie groups. The oriented vehicles, in this case, are constrained to travel at constant speed in a forward direction and their angular velocities directly controlled. In this paper we identify controls that induce steady motions of these oriented vehicles and yield closed form parametric expressions for these motions. The paths these vehicles trace are defined explicitly in terms of the controls and therefore invariant with respect to the coordinate system used to describe the motion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of real hypersurfaces in pseudo-Riemannian complex space forms and para-complex space forms, which are the pseudo-Riemannian generalizations of the complex space forms, is addressed. It is proved that there are no umbilic hypersurfaces, nor real hypersurfaces with parallel shape operator in such spaces. Denoting by J be the complex or para-complex structure of a pseudo-complex or para-complex space form respectively, a non-degenerate hypersurface of such space with unit normal vector field N is said to be Hopf if the tangent vector field JN is a principal direction. It is proved that if a hypersurface is Hopf, then the corresponding principal curvature (the Hopf curvature) is constant. It is also observed that in some cases a Hopf hypersurface must be, locally, a tube over a complex (or para-complex) submanifold, thus generalizing previous results of Cecil, Ryan and Montiel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper considers left-invariant control systems defined on the orthonormal frame bundles of simply connected manifolds of constant sectional curvature, namely the space forms Euclidean space E-3, the sphere S-3 and Hyperboloid H-3 with the corresponding frame bundles equal to the Euclidean group of motions SE(3), the rotation group SO(4) and the Lorentz group SO(1, 3). Orthonormal frame bundles of space forms coincide with their isometry groups and therefore the focus shifts to left-invariant control systems defined on Lie groups. In this paper a method for integrating these systems is given where the controls are time-independent. In the Euclidean case the elements of the Lie algebra se(3) are often referred to as twists. For constant twist motions, the corresponding curves g(t) is an element of SE(3) are known as screw motions, given in closed form by using the well known Rodrigues' formula. However, this formula is only applicable to the Euclidean case. This paper gives a method for computing the non-Euclidean screw motions in closed form. This involves decoupling the system into two lower dimensional systems using the double cover properties of Lie groups, then the lower dimensional systems are solved explicitly in closed form.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we study n-dimensional complete spacelike submanifolds with constant normalized scalar curvature immersed in semi-Riemannian space forms. By extending Cheng-Yau`s technique to these ambients, we obtain results to such submanifolds satisfying certain conditions on both the squared norm of the second fundamental form and the mean curvature. We also characterize compact non-negatively curved submanifolds in De Sitter space of index p.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

LetQ(4)( c) be a four-dimensional space form of constant curvature c. In this paper we show that the infimum of the absolute value of the Gauss-Kronecker curvature of a complete minimal hypersurface in Q(4)(c), c <= 0, whose Ricci curvature is bounded from below, is equal to zero. Further, we study the connected minimal hypersurfaces M(3) of a space form Q(4)( c) with constant Gauss-Kronecker curvature K. For the case c <= 0, we prove, by a local argument, that if K is constant, then K must be equal to zero. We also present a classification of complete minimal hypersurfaces of Q(4)( c) with K constant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The conversion between representations of angular momentum in spherical polar and cartesian form is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this article is to classify the real hypersurfaces in complex space forms of dimension 2 that are both Levi-flat and minimal. The main results are as follows: When the curvature of the complex space form is nonzero, there is a 1-parameter family of such hypersurfaces. Specifically, for each one-parameter subgroup of the isometry group of the complex space form, there is an essentially unique example that is invariant under this one-parameter subgroup. On the other hand, when the curvature of the space form is zero, i.e., when the space form is complex 2-space with its standard flat metric, there is an additional `exceptional' example that has no continuous symmetries but is invariant under a lattice of translations. Up to isometry and homothety, this is the unique example with no continuous symmetries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Let D( m, n; k) be the semi-direct product of two finite cyclic groups Z/m = < x > and Z/n = < y >, where the action is given by yxy(-1) = x(k). In particular, this includes the dihedral groups D(2m). We calculate the automorphism group Aut (D(m, n; k)).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Let G be any of the (binary) icosahedral, generalized octahedral (tetrahedral) groups or their quotients by the center. We calculate the automorphism group Aut(G).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: To demonstrate that relatively simple third-order theory can provide a framework which shows how peripheral refraction can be manipulated by altering the forms of spectacle lenses. Method: Third-order equations were used to yield lens forms that correct peripheral power errors, either for the lenses alone or in combination with typical peripheral refractions of myopic eyes. These results were compared with those of finite ray-tracing. Results: The approximate forms of spherical and conicoidal lenses provided by third-order theory were flatter over a moderate myopic range than the forms obtained by rigorous raytracing. Lenses designed to correct peripheral refractive errors produced large errors when used with foveal vision and a rotating eye. Correcting astigmatism tended to give large errors in mean oblique error and vice versa. When only spherical lens forms are used, correction of the relative hypermetropic peripheral refractions of myopic eyes which are observed experimentally, or the provision of relative myopic peripheral refractions in such eyes, seems impossible in the majority of cases. Conclusion: The third-order spectacle lens design approach can readily be used to show trends in peripheral refraction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider the Riemannian functional defined on the space of Riemannian metrics with unit volume on a closed smooth manifold M where R(g) and dv (g) denote the corresponding Riemannian curvature tensor and volume form and p a (0, a). First we prove that the Riemannian metrics with non-zero constant sectional curvature are strictly stable for for certain values of p. Then we conclude that they are strict local minimizers for for those values of p. Finally generalizing this result we prove that product of space forms of same type and dimension are strict local minimizer for for certain values of p.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the vector space of algebraic curvature operators we study the reaction ODE which is associated to the evolution equation of the Riemann curvature operator along the Ricci flow. More precisely, we give a partial classification of the zeros of this ODE up to suitable normalization and analyze the stability of a special class of zeros of the same. In particular, we show that the ODE is unstable near the curvature operators of the Riemannian product spaces where is an Einstein (locally) symmetric space of compact type and not a spherical space form when .