920 resultados para Spatial population dynamics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An evaluation of the genetic diversity within Fasciola hepatica (liver fluke) may provide an insight into its potential to respond to environmental changes, such as anthelmintic use or climate change. In this study, we determined the mitochondrial DNA haplotypes of >400 flukes from 29 individual cattle, from 2 farms in the Netherlands, as an exemplar of fasciolosis in a European context. Analysis of this dataset has provided us with a measure of the genetic variation within infrapopulations (individual hosts) and the diversity between infrapopulations within a herd of cattle. Temporal sampling from one farm allowed for the measurement of the stability of genetic variation at a single location, whilst the comparison between the two farms provided information on the variation in relation to distance and previous anthelmintic regimes. We showed that the liver fluke population in this region is predominantly linked to 2 distinct clades. Individual infrapopulations contain a leptokurtic distribution of genetically diverse flukes. The haplotypes present on a farm have been shown to change significantly over a relatively short time-period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Variation in carrying capacity and population return rates is generally ignored in traditional studies of population dynamics. Variation is hard to study in the field because of difficulties controlling the environment in order to obtain statistical replicates, and because of the scale and expense of experimenting on populations. There may also be ethical issues. To circumvent these problems we used detailed simulations of the simultaneous behaviours of interacting animals in an accurate facsimile of a real Danish landscape. The models incorporate as much as possible of the behaviour and ecology of skylarks Alauda arvensis, voles Microtus agrestis, a ground beetle Bembidion lampros and a linyphiid spider Erigone atra. This allows us to quantify and evaluate the importance of spatial and temporal heterogeneity on the population dynamics of the four species. Results: Both spatial and temporal heterogeneity affected the relationship between population growth rate and population density in all four species. Spatial heterogeneity accounted for 23–30% of the variance in population growth rate after accounting for the effects of density, reflecting big differences in local carrying capacity associated with the landscape features important to individual species. Temporal heterogeneity accounted for 3–13% of the variance in vole, skylark and spider, but 43% in beetles. The associated temporal variation in carrying capacity would be problematic in traditional analyses of density dependence. Return rates were less than one in all species and essentially invariant in skylarks, spiders and beetles. Return rates varied over the landscape in voles, being slower where there were larger fluctuations in local population sizes. Conclusion: Our analyses estimated the traditional parameters of carrying capacities and return rates, but these are now seen as varying continuously over the landscape depending on habitat quality and the mechanisms of density dependence. The importance of our results lies in our demonstration that the effects of spatial and temporal heterogeneity must be accounted for if we are to have accurate predictive models for use in management and conservation. This is an area which until now has lacked an adequate theoretical framework and methodology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bemisia tabaci, biotype B, commonly known as the silverleaf whitefly (SLW) is an alien species that invaded Australia in the mid-90s. This paper reports on the invasion ecology of SLW and the factors that are likely to have contributed to the first outbreak of this major pest in an Australian cotton cropping system, population dynamics of SLW within whitefly-susceptible crop (cotton and cucurbit) and non-crop vegetation (sowthistle, Sonchus spp.) components of the cropping system were investigated over four consecutive growing seasons (September-June) 2001/02-2004/05 in the Emerald Irrigation Area (EIA) of Queensland, Australia. Based on fixed geo-referenced sampling sites, variation in spatial and temporal abundance of SLW within each system component was quantified to provide baseline data for the development of ecologically sustainable pest management strategies. Parasitism of large (3rd and 4th instars) SLW nymphs by native aphelinid wasps was quantified to determine the potential for natural control of SLW populations. Following the initial outbreak in 2001/02, SLW abundance declined and stabilised over the next three seasons. The population dynamics of SLW is characterised by inter-seasonal population cycling between the non-crop (weed) and cotton components of the EIA cropping system. Cotton was the largest sink for and source of SLW during the study period. Over-wintering populations dispersed from weed host plant sources to cotton in spring followed by a reverse dispersal in late summer and autumn to broad-leaved crops and weeds. A basic spatial source-sink analysis showed that SLW adult and nymph densities were higher in cotton fields that were closer to over-wintering weed sources throughout spring than in fields that were further away. Cucurbit fields were not significant sources of SLW and did not appear to contribute significantly to the regional population dynamics of the pest. Substantial parasitism of nymphal stages throughout the study period indicates that native parasitoid species and other natural enemies are important sources of SLW mortality in Australian cotton production systems. Weather conditions and use of broad-spectrum insecticides for pest control are implicated in the initial outbreak and on-going pest status of SLW in the region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spatial and temporal variation in the abundance of species can often be ascribed to spatial and temporal variation in the surrounding environment. Knowledge of how biotic and abiotic factors operate over different spatial and temporal scales in determining distribution, abundance, and structure of populations lies at the heart of ecology. The major part of the current ecological theory stems from studies carried out in central parts of the distributional range of species, whereas knowledge of how marginal populations function is inadequate. Understanding how marginal populations, living at the edge of their range, function is however in a key position to advance ecology and evolutionary biology as scientific disciplines. My thesis focuses on the factors affecting dynamics of marginal populations of blue mussels (Mytilus edulis) living close to their tolerance limits with regard to salinity. The thesis aims to highlight the dynamics at the edge of the range and contrast these with dynamics in more central parts of the range in order to understand the potential interplay between the central and the marginal part in the focal system. The objectives of the thesis are approached by studies on: (1) factors affecting regional patterns of the species, (2) long-term temporal dynamics of the focal species spaced along a regional salinity gradient, (3) selective predation by increasing populations of roach (Rutilus rutilus) when feeding on their main food item, the blue mussel, (4) the primary and secondary effects of local wave exposure gradients and (5) the role of small-scale habitat heterogeneity as determinants of large-scale pattern. The thesis shows that populations of blue mussels are largely determined by large scale changes in sea water salinity, affecting mainly recruitment success and longevity of local populations. In opposite to the traditional view, the thesis strongly indicate that vertebrate predators strongly affect abundance and size structure of blue mussel populations, and that the role of these predators increases towards the margin where populations are increasingly top-down controlled. The thesis also indicates that the positive role of biogenic habitat modifiers increases towards the marginal areas, where populations of blue mussels are largely recruitment limited. Finally, the thesis shows that local blue mussel populations are strongly dependent on high water turbulence, and therefore, dense populations are constrained to offshore habitats. Finally, the thesis suggests that ongoing sedimentation of rocky shores is detrimental for the species, affecting recruitment success and post-recruit survival, pushing stable mussel beds towards offshore areas. Ongoing large scale changes in the Baltic Sea, especially dilution processes with attendant effects, are predicted to substantially contract the distributional range of the mussel, but also affect more central populations. The thesis shows that in order to understand the functioning of marginal populations, research should (1) strive for multi-scale approaches in order to link ecosystem patterns with ecosystem processes, and (2) challenge the prevailing tenets that origin from research carried out in central areas that may not be valid at the edge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Population dynamics are generally viewed as the result of intrinsic (purely density dependent) and extrinsic (environmental) processes. Both components, and potential interactions between those two, have to be modelled in order to understand and predict dynamics of natural populations; a topic that is of great importance in population management and conservation. This thesis focuses on modelling environmental effects in population dynamics and how effects of potentially relevant environmental variables can be statistically identified and quantified from time series data. Chapter I presents some useful models of multiplicative environmental effects for unstructured density dependent populations. The presented models can be written as standard multiple regression models that are easy to fit to data. Chapters II IV constitute empirical studies that statistically model environmental effects on population dynamics of several migratory bird species with different life history characteristics and migration strategies. In Chapter II, spruce cone crops are found to have a strong positive effect on the population growth of the great spotted woodpecker (Dendrocopos major), while cone crops of pine another important food resource for the species do not effectively explain population growth. The study compares rate- and ratio-dependent effects of cone availability, using state-space models that distinguish between process and observation error in the time series data. Chapter III shows how drought, in combination with settling behaviour during migration, produces asymmetric spatially synchronous patterns of population dynamics in North American ducks (genus Anas). Chapter IV investigates the dynamics of a Finnish population of skylark (Alauda arvensis), and point out effects of rainfall and habitat quality on population growth. Because the skylark time series and some of the environmental variables included show strong positive autocorrelation, the statistical significances are calculated using a Monte Carlo method, where random autocorrelated time series are generated. Chapter V is a simulation-based study, showing that ignoring observation error in analyses of population time series data can bias the estimated effects and measures of uncertainty, if the environmental variables are autocorrelated. It is concluded that the use of state-space models is an effective way to reach more accurate results. In summary, there are several biological assumptions and methodological issues that can affect the inferential outcome when estimating environmental effects from time series data, and that therefore need special attention. The functional form of the environmental effects and potential interactions between environment and population density are important to deal with. Other issues that should be considered are assumptions about density dependent regulation, modelling potential observation error, and when needed, accounting for spatial and/or temporal autocorrelation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of the existence and stability of periodic solutions of infinite-lag integra-differential equations is considered. Specifically, the integrals involved are of the convolution type with the dependent variable being integrated over the range (- ∞,t), as occur in models of population growth. It is shown that Hopf bifurcation of periodic solutions from a steady state can occur, when a pair of eigenvalues crosses the imaginary axis. Also considered is the existence of traveling wave solutions of a model population equation allowing spatial diffusion in addition to the usual temporal variation. Lastly, the stability of the periodic solutions resulting from Hopf bifurcation is determined with aid of a Floquet theory.

The first chapter is devoted to linear integro-differential equations with constant coefficients utilizing the method of semi-groups of operators. The second chapter analyzes the Hopf bifurcation providing an existence theorem. Also, the two-timing perturbation procedure is applied to construct the periodic solutions. The third chapter uses two-timing to obtain traveling wave solutions of the diffusive model, as well as providing an existence theorem. The fourth chapter develops a Floquet theory for linear integro-differential equations with periodic coefficients again using the semi-group approach. The fifth chapter gives sufficient conditions for the stability or instability of a periodic solution in terms of the linearization of the equations. These results are then applied to the Hopf bifurcation problem and to a certain population equation modeling periodically fluctuating environments to deduce the stability of the corresponding periodic solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study is to explore aspects of social organisation during the Upper Palaeolithic and Mesolithic periods using craniometric data. Different hypotheses were tested using geometric morphometrics, alongside traditional craniometric data. The clustering of individuals from the same site, as well as a correspondence to an isolation-by-distance model—particular in the Mesolithic samples—points to population structure within these groups. Moreover, discontinuities in cranial traits between the early Upper Palaeolithic and later periods could suggest that the Last Glacial Maximum had a disruptive effect on populations in Europe. Differences in social organisation can often result from cultural norms regarding post-marital residence. Such differences can be tested by comparing cranial data to that of geographic information. Greater variation in male cranial traits relative to females, after controlling for location, suggests that the overall pattern of residence during the Upper Palaeolithic and Mesolithic was one of matrilocality. It has been suggested that coastal occupation was density dependent and these populations show a greater degree of sedentism than their inland counterparts. Moreover, it has been proposed that coastal areas were not continuously occupied until the Late Pleistocene due to spatial restrictions that would adversely affect reproductive opportunities. This study corroborates the pattern seen in cranial traits corresponded with that of a more sedentary population. The results are consistent with the hypothesis that coastal populations are more sedentary than inland populations during these periods. This study adds new information regarding the social dynamics of prehistoric populations in Europe and sheds light on some of the conditions that may have paved the way for the transition to agriculture

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To identify the causes of population decline in migratory birds, researchers must determine the relative influence of environmental changes on population dynamics while the birds are on breeding grounds, wintering grounds, and en route between the two. This is problematic when the wintering areas of specific populations are unknown. Here, we first identified the putative wintering areas of Common House-Martin (Delichon urbicum) and Common Swift (Apus apus) populations breeding in northern Italy as those areas, within the wintering ranges of these species, where the winter Normalized Difference Vegetation Index (NDVI), which may affect winter survival, best predicted annual variation in population indices observed in the breeding grounds in 1992–2009. In these analyses, we controlled for the potentially confounding effects of rainfall in the breeding grounds during the previous year, which may affect reproductive success; the North Atlantic Oscillation Index (NAO), which may account for climatic conditions faced by birds during migration; and the linear and squared term of year, which account for nonlinear population trends. The areas thus identified ranged from Guinea to Nigeria for the Common House-Martin, and were located in southern Ghana for the Common Swift. We then regressed annual population indices on mean NDVI values in the putative wintering areas and on the other variables, and used Bayesian model averaging (BMA) and hierarchical partitioning (HP) of variance to assess their relative contribution to population dynamics. We re-ran all the analyses using NDVI values at different spatial scales, and consistently found that our population of Common House-Martin was primarily affected by spring rainfall (43%–47.7% explained variance) and NDVI (24%–26.9%), while the Common Swift population was primarily affected by the NDVI (22.7%–34.8%). Although these results must be further validated, currently they are the only hypotheses about the wintering grounds of the Italian populations of these species, as no Common House-Martin and Common Swift ringed in Italy have been recovered in their wintering ranges.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Microtine species in Fennoscandia display a distinct north-south gradient from regular cycles to stable populations. The gradient has often been attributed to changes in the interactions between microtines and their predators. Although the spatial structure of the environment is known to influence predator-prey dynamics of a wide range of species, it has scarcely been considered in relation to the Fennoscandian gradient. Furthermore, the length of microtine breeding season also displays a north-south gradient. However, little consideration has been given to its role in shaping or generating population cycles. Because these factors covary along the gradient it is difficult to distinguish their effects experimentally in the field. The distinction is here attempted using realistic agent-based modelling. Methodology/Principal Findings: By using a spatially explicit computer simulation model based on behavioural and ecological data from the field vole (Microtus agrestis), we generated a number of repeated time series of vole densities whose mean population size and amplitude were measured. Subsequently, these time series were subjected to statistical autoregressive modelling, to investigate the effects on vole population dynamics of making predators more specialised, of altering the breeding season, and increasing the level of habitat fragmentation. We found that fragmentation as well as the presence of specialist predators are necessary for the occurrence of population cycles. Habitat fragmentation and predator assembly jointly determined cycle length and amplitude. Length of vole breeding season had little impact on the oscillations. Significance: There is good agreement between our results and the experimental work from Fennoscandia, but our results allow distinction of causation that is hard to unravel in field experiments. We hope our results will help understand the reasons for cycle gradients observed in other areas. Our results clearly demonstrate the importance of landscape fragmentation for population cycling and we recommend that the degree of fragmentation be more fully considered in future analyses of vole dynamics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Observational evidence is scarce concerning the distribution of plant pathogen population sizes or densities as a function of time-scale or spatial scale. For wild pathosystems we can only get indirect evidence from evolutionary patterns and the consequences of biological invasions.We have little or no evidence bearing on extermination of hosts by pathogens, or successful escape of a host from a pathogen. Evidence over the last couple of centuries from crops suggest that the abundance of particular pathogens in the spectrum affecting a given host can vary hugely on decadal timescales. However, this may be an artefact of domestication and intensive cultivation. Host-pathogen dynamics can be formulated mathematically fairly easily–for example as SIR-type differential equation or difference equation models, and this has been the (successful) focus of recent work in crops. “Long-term” is then discussed in terms of the time taken to relax from a perturbation to the asymptotic state. However, both host and pathogen dynamics are driven by environmental factors as well as their mutual interactions, and both host and pathogen co-evolve, and evolve in response to external factors. We have virtually no information about the importance and natural role of higher trophic levels (hyperpathogens) and competitors, but they could also induce long-scale fluctuations in the abundance of pathogens on particular hosts. In wild pathosystems the host distribution cannot be modelled as either a uniform density or even a uniform distribution of fields (which could then be treated as individuals). Patterns of short term density-dependence and the detail of host distribution are therefore critical to long-term dynamics. Host density distributions are not usually scale-free, but are rarely uniform or clearly structured on a single scale. In a (multiply structured) metapopulation with coevolution and external disturbances it could well be the case that the time required to attain equilibrium (if it exists) based on conditions stable over a specified time-scale is longer than that time-scale. Alternatively, local equilibria may be reached fairly rapidly following perturbations but the meta-population equilibrium be attained very slowly. In either case, meta-stability on various time-scales is a more relevant than equilibrium concepts in explaining observed patterns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective. To identify the existence of spatial and temporal patterns in the occurrence of intentional homicides in the municipality of Sao Paulo (MSP), Brazil, and to discuss the analytical value of taking such patterns into account when designing studies that address the dynamics and factors associated with the incidence of homicides. Methods. A longitudinal ecological study was conducted, having as units of analysis 13 205 census tracts and the 96 census districts that congregate these sectors in Sao Paulo. All intentional homicides reported in the city between 2000 and 2008 were analyzed. The gross homicide rates per 100 000 population was calculated as well as the global and local Bayesian estimates for each census tract during the study period. To verify the possibility of identifying different patterns of the spatial distribution of homicides, we used BoxMap and Moran's I index. Results. The homicide trends in the city of Sao Paulo in the last decade were not homogeneous and systematic. Instead, seven patterns of spatial distribution were identified; that is, seven spatial regimes for the occurrence of intentional homicides, considering the homicide rates within each census tract as well as the rates in adjacent tracts. These spatial distribution regimes were not contained within the limits of the census tracts and districts. Conclusions. The results show the importance of analyzing the spatial distribution of social phenomena without restriction of political and administrative boundaries.