904 resultados para Spaces of measurable functions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider in this paper the solvability of linear integral equations on the real line, in operator form (λ−K)φ=ψ, where and K is an integral operator. We impose conditions on the kernel, k, of K which ensure that K is bounded as an operator on . Let Xa denote the weighted space as |s|→∞}. Our first result is that if, additionally, |k(s,t)|⩽κ(s−t), with and κ(s)=O(|s|−b) as |s|→∞, for some b>1, then the spectrum of K is the same on Xa as on X, for 0of operators, , which ensure that, if λ≠0 and λφ=Kkφ has only the trivial solution in X, for all k∈W, then, for 0⩽a⩽b, (λ−K)φ=ψ has exactly one solution φ∈Xa for every k∈W and ψ∈Xa. These conditions ensure further that is bounded uniformly in k∈W, for 0⩽a⩽b. As a particular application we consider the case when the kernel takes the form k(s,t)=κ(s−t)z(t), with , , and κ(s)=O(|s|−b) as |s|→∞, for some b>1. As an example where kernels of this latter form occur we discuss a boundary integral equation formulation of an impedance boundary value problem for the Helmholtz equation in a half-plane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we prove that if U is an open subset of a metrizable locally convex space E of infinite dimension, the space H(U) of all holomorphic functions on U, endowed with the Nachbin–Coeuré topology τδ, is not metrizable. Our result can be applied to get that, for all usual topologies, H(U) is metrizable if and only if E has finite dimension. RESUMEN. En este artículo se demuestra que si U es un abierto en un espacio E localmente convexo metrizable de dimensión infinita y H(U) es el espacio de funciones holomorfas en U, entonces la topología de Nachbin-Coeuré en H(U) no es metrizable. Este resultado se utiliza para demostrar que las topologías habituales en H(U) son metrizables si y sólo si E tiene dimensión finita.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Let E be an infinite dimensional complex Banach space. We prove the existence of an infinitely generated algebra, an infinite dimensional closed subspace and a dense subspace of entire functions on E whose non-zero elements are functions of unbounded type. We also show that the τδ topology on the space of all holomorphic functions cannot be obtained as a countable inductive limit of Fr´echet spaces. RESUMEN. Sea E un espacio de Banach complejo de dimensión infinita y sea H(E) el espacio de funciones holomorfas definidas en E. En el artículo se demuestra la existencia de un álgebra infinitamente generada en H(E), un subespacio vectorial en H(E) cerrado de dimensión infinita y un subespacio denso en H(E) cuyos elementos no nulos son funciones de tipo no acotado. También se demuestra que el espacio de funciones holomorfas con la topología ? no es un límite inductivo numberable de espacios de Fréchet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MSC 2010: 26A33, 46Fxx, 58C05 Dedicated to 80-th birthday of Prof. Rudolf Gorenflo

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary: 46B03, 46B26. Secondary: 46E15, 54C35.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AMS Subject Classification 2010: 41A25, 41A27, 41A35, 41A36, 41A40, 42Al6, 42A85.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2010 Mathematics Subject Classification: 47B33, 47B38.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is a continuation and a complement of our previous work on isomorphic classification of some spaces of compact operators. We improve the main result concerning extensions of the classical isomorphic classification of the Banach spaces of continuous functions on ordinals. As an application, fixing an ordinal a and denoting by X(xi), omega(alpha) <= xi < omega(alpha+1), the Banach space of all X-valued continuous functions defined in the interval of ordinals [0,xi] and equipped with the supremum, we provide complete isomorphic classifications of some Banach spaces K(X(xi),Y(eta)) of compact operators from X(xi) to Y(eta), eta >= omega. It is relatively consistent with ZFC (Zermelo-Fraenkel set theory with the axiom of choice) that these results include the following cases: 1.X* contains no copy of c(0) and has the Mazur property, and Y = c(0)(J) for every set J. 2. X = c(0)(I) and Y = l(q)(J) for any infinite sets I and J and 1 <= q < infinity. 3. X = l(p)(I) and Y = l(q)(J) for any infinite sets I and J and 1 <= q < p < infinity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We prove an extension of the classical isomorphic classification of Banach spaces of continuous functions on ordinals. As a consequence, we give complete isomorphic classifications of some Banach spaces K(X,Y(n)), eta >= omega, of compact operators from X to Y(eta), the space of all continuous Y-valued functions defined in the interval of ordinals [1, eta] and equipped with the supremum norm. In particular, under the Continuum Hypothesis, we extend a recent result of C. Samuel by classifying, up to isomorphism, the spaces K(X(xi), c(0)(Gamma)(eta)), where omega <= xi < omega(1,) eta >= omega, Gamma is a countable set, X contains no complemented copy of l(1), X* has the Mazur property and the density character of X** is less than or equal to N(1).

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We classify up to isomorphism the spaces of compact operators K(E, F), where E and F are Banach spaces of all continuous functions defined on the compact spaces 2(m) circle plus [0, alpha], the topological sum of Cantor cubes 2(m) and the intervals of ordinal numbers [0, alpha]. More precisely, we prove that if 2(m) and aleph(gamma) are not real-valued measurable cardinals and n >= aleph(0) is not sequential cardinal, then for every ordinals xi, eta, lambda and mu with xi >= omega(1), eta >= omega(1), lambda = mu < omega or lambda, mu is an element of [omega(gamma), omega(gamma+1)[, the following statements are equivalent: (a) K(C(2(m) circle plus [0, lambda]), C(2(n) circle plus [0, xi])) and K(C(2(m) circle plus [0, mu]), C(2(n) circle plus [0, eta]) are isomorphic. (b) Either C([0, xi]) is isomorphic to C([0, eta] or C([0, xi]) is isomorphic to C([0, alpha p]) and C([0, eta]) is isomorphic to C([0,alpha q]) for some regular cardinal alpha and finite ordinals p not equal q. Thus, it is relatively consistent with ZFC that this result furnishes a complete isomorphic classification of these spaces of compact operators. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concept of the distinguished sets is applied to the investigation of the functionally countable spaces. It is proved that every Baire function on a functionally countable space has a countable image. This is a positive answer to a question of R. Levy and W. D. Rice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 43A22, 43A25.