991 resultados para Sliding vector field


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show how certain N-dimensional dynamical systems are able to exploit the full instability capabilities of their fixed points to do Hopf bifurcations and how such a behavior produces complex time evolutions based on the nonlinear combination of the oscillation modes that emerged from these bifurcations. For really different oscillation frequencies, the evolutions describe robust wave form structures, usually periodic, in which selfsimilarity with respect to both the time scale and system dimension is clearly appreciated. For closer frequencies, the evolution signals usually appear irregular but are still based on the repetition of complex wave form structures. The study is developed by considering vector fields with a scalar-valued nonlinear function of a single variable that is a linear combination of the N dynamical variables. In this case, the linear stability analysis can be used to design N-dimensional systems in which the fixed points of a saddle-node pair experience up to N21 Hopf bifurcations with preselected oscillation frequencies. The secondary processes occurring in the phase region where the variety of limit cycles appear may be rather complex and difficult to characterize, but they produce the nonlinear mixing of oscillation modes with relatively generic features

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce a flexible technique for interactive exploration of vector field data through classification derived from user-specified feature templates. Our method is founded on the observation that, while similar features within the vector field may be spatially disparate, they share similar neighborhood characteristics. Users generate feature-based visualizations by interactively highlighting well-accepted and domain specific representative feature points. Feature exploration begins with the computation of attributes that describe the neighborhood of each sample within the input vector field. Compilation of these attributes forms a representation of the vector field samples in the attribute space. We project the attribute points onto the canonical 2D plane to enable interactive exploration of the vector field using a painting interface. The projection encodes the similarities between vector field points within the distances computed between their associated attribute points. The proposed method is performed at interactive rates for enhanced user experience and is completely flexible as showcased by the simultaneous identification of diverse feature types.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the geometry and the periodic geodesics of a compact Lorentzian manifold that has a Killing vector field which is timelike somewhere. Using a compactness argument for subgroups of the isometry group, we prove the existence of one timelike non self-intersecting periodic geodesic. If the Killing vector field is nowhere vanishing, then there are at least two distinct periodic geodesics; as a special case, compact stationary manifolds have at least two periodic timelike geodesics. We also discuss some properties of the topology of such manifolds. In particular, we show that a compact manifold M admits a Lorentzian metric with a nowhere vanishing Killing vector field which is timelike somewhere if and only if M admits a smooth circle action without fixed points.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent investigations of various quantum-gravity theories have revealed a variety of possible mechanisms that lead to Lorentz violation. One of the more elegant of these mechanisms is known as Spontaneous Lorentz Symmetry Breaking (SLSB), where a vector or tensor field acquires a nonzero vacuum expectation value. As a consequence of this symmetry breaking, massless Nambu-Goldstone modes appear with properties similar to the photon in Electromagnetism. This thesis considers the most general class of vector field theories that exhibit spontaneous Lorentz violation-known as bumblebee models-and examines their candidacy as potential alternative explanations of E&M, offering the possibility that Einstein-Maxwell theory could emerge as a result of SLSB rather than of local U(1) gauge invariance. With this aim we employ Dirac's Hamiltonian Constraint Analysis procedure to examine the constraint structures and degrees of freedom inherent in three candidate bumblebee models, each with a different potential function, and compare these results to those of Electromagnetism. We find that none of these models share similar constraint structures to that of E&M, and that the number of degrees of freedom for each model exceeds that of Electromagnetism by at least two, pointing to the potential existence of massive modes or propagating ghost modes in the bumblebee theories.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For a class of reversible quadratic vector fields on R-3 we study the periodic orbits that bifurcate from a heteroclinic loop having two singular points at infinity connected by an invariant straight line in the finite part and another straight line at infinity in the local chart U-2. More specifically, we prove that for all n is an element of N, there exists epsilon(n) > 0 such that the reversible quadratic polynomial differential systemx = a(0) + a(1y) + a(3y)(2) + a(4Y)(2) + epsilon(a(2x)(2) + a(3xz)),y = b(1z) + b(3yz) + epsilon b(2xy),z = c(1y) +c(4az)(2) + epsilon c(2xz)in R-3, with a(0) < 0, b(1)c(1) < 0, a(2) < 0, b(2) < a(2), a(4) > 0, c(2) < a(2) and b(3) is not an element of (c(4), 4c(4)), for epsilon is an element of (0, epsilon(n)) has at least n periodic orbits near the heteroclinic loop. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Singular perturbations problems in dimension three which are approximations of discontinuous vector fields are studied in this paper. The main result states that the regularization process developed by Sotomayor and Teixeira produces a singular problem for which the discontinuous set is a center manifold. Moreover, the definition of' sliding vector field coincides with the reduced problem of the corresponding singular problem for a class of vector fields.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article extends results contained in Buzzi et al. (2006) [4], Llibre et al. (2007, 2008) [12,13] concerning the dynamics of non-smooth systems. In those papers a piecewise C-k discontinuous vector field Z on R-n is considered when the discontinuities are concentrated on a codimension one submanifold. In this paper our aim is to study the dynamics of a discontinuous system when its discontinuity set belongs to a general class of algebraic sets. In order to do this we first consider F :U -> R a polynomial function defined on the open subset U subset of R-n. The set F-1 (0) divides U into subdomains U-1, U-2,...,U-k, with border F-1(0). These subdomains provide a Whitney stratification on U. We consider Z(i) :U-i -> R-n smooth vector fields and we get Z = (Z(1),...., Z(k)) a discontinuous vector field with discontinuities in F-1(0). Our approach combines several techniques such as epsilon-regularization process, blowing-up method and singular perturbation theory. Recall that an approximation of a discontinuous vector field Z by a one parameter family of continuous vector fields is called an epsilon-regularization of Z (see Sotomayor and Teixeira, 1996 [18]; Llibre and Teixeira, 1997 [15]). Systems as discussed in this paper turn out to be relevant for problems in control theory (Minorsky, 1969 [16]), in systems with hysteresis (Seidman, 2006 [17]) and in mechanical systems with impacts (di Bernardo et al., 2008 [5]). (C) 2011 Elsevier Masson SAS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article we describe some qualitative and geometric aspects of nonsmooth dynamical systems theory around typical singularities. We also establish an interaction between nonsmooth systems and geometric singular perturbation theory. Such systems are represented by discontinuous vector fields on R(l), l >= 2, where their discontinuity set is a codimension one algebraic variety. By means of a regularization process proceeded by a blow-up technique we are able to bring about some results that bridge the space between discontinuous systems and singularly perturbed smooth systems. We also present an analysis of a subclass of discontinuous vector fields that present transient behavior in the 2-dimensional case, and we dedicate a section to providing sufficient conditions in order for our systems to have local asymptotic stability.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

feature extraction, feature tracking, vector field visualization