1000 resultados para Sistemas de inferência Fuzzy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Energia na Agricultura) - FCA

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mestrado em Engenharia Electrotécnica e de Computadores

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho de pesquisa e desenvolvimento tem como fundamento principal o Conceito de Controlo por Lógica Difusa. Utilizando as ferramentas do software Matlab, foi possível desenvolver um controlador com base na inferência difusa que permitisse controlar qualquer tipo de sistema físico real, independentemente das suas características. O Controlo Lógico Difuso, do inglês “Fuzzy Control”, é um tipo de controlo muito particular, pois permite o uso simultâneo de dados numéricos com variáveis linguísticas que tem por base o conhecimento heurístico dos sistemas a controlar. Desta forma, consegue-se quantificar, por exemplo, se um copo está “meio cheio” ou “meio vazio”, se uma pessoa é “alta” ou “baixa”, se está “frio” ou “muito frio”. O controlo PID é, sem dúvida alguma, o controlador mais amplamente utilizado no controlo de sistemas. Devido à sua simplicidade de construção, aos reduzidos custos de aplicação e manutenção e aos resultados que se obtêm, este controlador torna-se a primeira opção quando se pretende implementar uma malha de controlo num determinado sistema. Caracterizado por três parâmetros de ajuste, a saber componente proporcional, integral e derivativa, as três em conjunto permitem uma sintonia eficaz de qualquer tipo de sistema. De forma a automatizar o processo de sintonia de controladores e, aproveitando o que melhor oferece o Controlo Difuso e o Controlo PID, agrupou-se os dois controladores, onde em conjunto, como poderemos constatar mais adiante, foram obtidos resultados que vão de encontro com os objectivos traçados. Com o auxílio do simulink do Matlab, foi desenvolvido o diagrama de blocos do sistema de controlo, onde o controlador difuso tem a tarefa de supervisionar a resposta do controlador PID, corrigindo-a ao longo do tempo de simulação. O controlador desenvolvido é denominado por Controlador FuzzyPID. Durante o desenvolvimento prático do trabalho, foi simulada a resposta de diversos sistemas à entrada em degrau unitário. Os sistemas estudados são na sua maioria sistemas físicos reais, que representam sistemas mecânicos, térmicos, pneumáticos, eléctricos, etc., e que podem ser facilmente descritos por funções de transferência de primeira, segunda e de ordem superior, com e sem atraso.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the design, implementation and enforcement of a system for industrial process control based on fuzzy logic and developed using Java, with support for industrial communication protocol through the OPC (Ole for Process Control). Besides the java framework, the software is completely independent from other platforms. It provides friendly and functional tools for modeling, construction and editing of complex fuzzy inference systems, and uses these logical systems in control of a wide variety of industrial processes. The main requirements of the developed system should be flexibility, robustness, reliability and ease of expansion

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Os sistemas elétricos de potência modernos apresentam inúmeros desafios em sua operação. Nos sistemas de distribuição de energia elétrica, devido à grande ramificação, presença de extensos ramais monofásicos, à dinâmica das cargas e demais particularidades inerentes, a localização de faltas representa um dos maiores desafios. Das barreiras encontradas, a influência da impedância de falta é uma das maiores, afetando significativamente a aplicação dos métodos tradicionais na localização, visto que a magnitude das correntes de falta é similar à da corrente de carga. Neste sentido, esta tese objetivou desenvolver um sistema inteligente para localização de faltas de alta impedância, o qual foi embasado na aplicação da técnica de decomposição por componentes ortogonais no pré-processamento das variáveis e inferência fuzzy para interpretar as não-linearidades do Sistemas de Distribuição com presença de Geração Distribuída. Os dados para treinamento do sistema inteligente foram obtidos a partir de simulações computacionais de um alimentador real, considerando uma modelagem não-linear da falta de alta impedância. O sistema fuzzy resultante foi capaz de estimar as distâncias de falta com um erro absoluto médio inferior a 500 m e um erro absoluto máximo da ordem de 1,5 km, em um alimentador com cerca de 18 km de extensão. Tais resultados equivalem a um grau de exatidão, para a maior parte das ocorrências, dentro do intervalo de ±10%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Automatic detection of blood components is an important topic in the field of hematology. The segmentation is an important stage because it allows components to be grouped into common areas and processed separately and leukocyte differential classification enables them to be analyzed separately. With the auto-segmentation and differential classification, this work is contributing to the analysis process of blood components by providing tools that reduce the manual labor and increasing its accuracy and efficiency. Using techniques of digital image processing associated with a generic and automatic fuzzy approach, this work proposes two Fuzzy Inference Systems, defined as I and II, for autosegmentation of blood components and leukocyte differential classification, respectively, in microscopic images smears. Using the Fuzzy Inference System I, the proposed technique performs the segmentation of the image in four regions: the leukocyte’s nucleus and cytoplasm, erythrocyte and plasma area and using the Fuzzy Inference System II and the segmented leukocyte (nucleus and cytoplasm) classify them differentially in five types: basophils, eosinophils, lymphocytes, monocytes and neutrophils. Were used for testing 530 images containing microscopic samples of blood smears with different methods. The images were processed and its accuracy indices and Gold Standards were calculated and compared with the manual results and other results found at literature for the same problems. Regarding segmentation, a technique developed showed percentages of accuracy of 97.31% for leukocytes, 95.39% to erythrocytes and 95.06% for blood plasma. As for the differential classification, the percentage varied between 92.98% and 98.39% for the different leukocyte types. In addition to promoting auto-segmentation and differential classification, the proposed technique also contributes to the definition of new descriptors and the construction of an image database using various processes hematological staining

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work proposes to adjust the Notification Oriented Paradigm (NOP) so that it provides support to fuzzy concepts. NOP is inspired by elements of imperative and declarative paradigms, seeking to solve some of the drawbacks of both. By decomposing an application into a network of smaller computational entities that are executed only when necessary, NOP eliminates the need to perform unnecessary computations and helps to achieve better logical-causal uncoupling, facilitating code reuse and application distribution over multiple processors or machines. In addition, NOP allows to express the logical-causal knowledge at a high level of abstraction, through rules in IF-THEN format. Fuzzy systems, in turn, perform logical inferences on causal knowledge bases (IF-THEN rules) that can deal with problems involving uncertainty. Since PON uses IF-THEN rules in an alternative way, reducing redundant evaluations and providing better decoupling, this research has been carried out to identify, propose and evaluate the necessary changes to be made on NOP allowing to be used in the development of fuzzy systems. After that, two fully usable materializations were created: a C++ framework, and a complete programming language (LingPONFuzzy) that provide support to fuzzy inference systems. From there study cases have been created and several tests cases were conducted, in order to validate the proposed solution. The test results have shown a significant reduction in the number of rules evaluated in comparison to a fuzzy system developed using conventional tools (frameworks), which could represent an improvement in performance of the applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Um sistema de inferência fuzzy foi desenvolvido baseado em dados da literatura para predição do consumo de ração, ganho de peso e conversão alimentar de frangos de corte com idade variando de 1 a 21, dias submetidos a diferentes condições térmicas. O sistema fuzzy foi estruturado com base em três variáveis de entrada: idade das aves (semanas), temperatura (°C) e umidade relativa (%) ambientes, sendo que as variáveis de saída consideradas foram: ganho de peso, consumo de ração e conversão alimentar. A inferência foi realizada por meio do método de Mamdani, que consistiu na elaboração de 45 regras e a defuzzificação por meio do método do Centro de Gravidade. Com base nos resultados, ao se compararem os dados da literatura com os obtidos pelo sistema fuzzy proposto, verificou-se desempenho satisfatório na predição das variáveis respostas, com R² da ordem de 0,995; 0,998 e 0,976, respectivamente. O ganho de peso predito pela lógica fuzzy foi validado com dados experimentais de campo, no qual se obteve R² = 0,975, apresentando grande potencial de uso em sistemas de climatização automatizado.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Desde a incorporação da automação no processo produtivo, a busca por sistemas mais eficientes, objetivando o aumento da produtividade e da qualidade dos produtos e serviços, direcionou os estudos para o planejamento de estratégias que permitissem o monitoramento de sistemas com o intuito principal de torna-los mais autônomos e robustos. Por esse motivo, as pesquisas envolvendo o diagnóstico de faltas em sistemas industriais tornaram-se mais intensivas, visto a necessidade da incorporação de técnicas para monitoramente detalhado de sistemas. Tais técnicas permitem a verificação de perturbações, falta ou mesmo falhas. Em vista disso, essa trabalho investiga técnicas de detecção e diagnostico de faltas e sua aplicação em motores de indução trifásicos, delimitando o seu estudo em duas situações: sistemas livre de faltas, e sobre atuação da falta incipiente do tipo curto-circuitoparcial nas espiras do enrolamento do estator. Para a detecção de faltas, utilizou-se analise paramétrica dos parâmetros de um modelo de tempo discreto, de primeira ordem, na estrutura autoregressivo com entradas exógenas (ARX). Os parâmetros do modelo ARX, que trazem informação sobre a dinâmica dominante do sistema, são obtidos recursivamente pela técnica dos mínimos quadrados recursivos (MQR). Para avaliação da falta, foi desenvolvido um sistema de inferência fuzzy (SIF) intervala do tipo-2, cuja mancha de incerteza ou footprint of uncertainty (FOU), características de sistema fuzzy tipo-2, é ideal como forma de representar ruídos inerentes a sistemas reais e erros numéricos provenientes do processo de estimação paramétrica. Os parâmetros do modelo ARX são entradas para o SIF. Algoritmos genéricos (AG’s) foram utilizados para otimização dos SIF intervalares tipo-2, objetivando reduzir o erro de diagnóstico da falta identificada na saída desses sistemas. Os resultados obtidos em teste de simulação computacional demonstram a efetividade da metodologia proposta.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A satisfação das necessidades energéticas mundiais, cada vez mais exigentes, bem como a necessidade urgente de procurar caminhos que permitam usufruir de energia, da forma menos poluente possível, levam à necessidade de serem explorados caminhos que permitam cumprir estes pressupostos. A escolha da utilização das energias renováveis na produção de energia, torna-se cada vez mais interessante, quer do ponto de vista ambiental quer económico. O fundamento da lógica difusa está associado à recolha de informações vagas, que são no fundo uma linguagem falada por seres humanos, possibilitando a passagem deste tipo de linguagem para formato numérico, permitindo assim uma manipulação computacional. Elementos climáticos como o sol e o vento, podem ser descritos em forma de variáveis linguísticas, como é o caso de vento forte, temperatura baixa, irradiação fraca, etc. Isto faz com que a aplicação de um controlo a partir destes fenómenos, justifique ser realizado com recurso a sistemas de inferência difusa. Para a realização do trabalho proposto, foram consumados estudos relativos às energias renováveis, com particular enfoque na solar e na eólica. Também foi realizado um estudo dos conceitos pertencentes à lógica difusa e a sistemas de inferência difusa com o objetivo de perceber os diversos parâmetros constituintes desta matéria. Foi realizado o estudo e desenvolvimento de um sistema de aquisição de dados, bem como do controlador difuso que é o busílis do trabalho descrito neste relatório. Para tal, o trabalho foi efetuado com o recurso ao software MATLAB, a partir do qual foram desenvolvidas aplicações que possibilitaram a obtenção de dados climáticos, com vista à sua utilização na toolbox Fuzzy Logic a qual foi utilizada para o desenvolvimento de todo o algoritmo de controlo. Com a possibilidade de aquisição de dados concluída e das variáveis que iriam ser necessárias definidas, foi implementado o controlador difuso que foi sendo sintonizado ao longo do trabalho por forma a garantir os melhores resultados possíveis. Com o recurso à ferramenta Guide, também do MATLAB, foi criada a interface do sistema com o utilizador, sendo possível a averiguação da energia a ser produzida, bem como das contribuições de cada uma das fontes de energia renováveis para a obtenção dessa mesma energia. Por último, foi feita uma análise de resultados através da comparação entre os valores reais esperados e os valores obtidos pelo controlador difuso, bem como assinaladas conclusões e possibilidades de desenvolvimentos futuros deste trabalho.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Esta tese está inserida no trabalho desenvolvido pelo Grupo de Pesquisa de Inteligência Artificial (GIA) da UFRGS, sob a orientação da Professora. Dra. Rosa Maria Vicari e situa-se na área da Inteligência Artificial, com aplicações na Educação a Distância. As principais áreas onde este trabalho de Pesquisa se situa são: Sistemas Tutores Inteligentes, Sistemas Multiagente e Psicologia Social Cognitiva. Dentro desse contexto, o objetivo principal desta pesquisa é a modelagem computacional de aspectos da auto-eficácia de alunos realizando cursos on-line, tomando-se por base o trabalho de Bandura, cuja natureza engloba a cognição e afetividade. Este autor define como Auto-Eficácia "a crença do indivíduo sobre as suas capacidades de exercer controle sobre acontecimentos que afetam a sua vida" e “a crença nas suas capacidades para mobilizar motivação, recursos cognitivos e implementar ações que lhe permitam exercer controle sobre tarefas exigidas". Esta tese propõe um agente capaz de perceber e monitorar os aspectos da autoeficácia do aluno, denominado agente Mediador da Auto-Eficácia (MAE), e prover o modelo do aluno com esta nova variável. O senso de auto-eficácia consiste em crenças, que são processos cognitivos do indivíduo sobre suas capacidades. É em função das crenças de auto-eficácia que ocorrerão as escolhas, a direção e a persistência nos comportamentos de aprendizagem por parte do aluno. Nesse contexto, acredita-se que o desenvolvimento do senso de auto-eficácia do aluno poderá lhe conferir a força motivacional para elaborar sua aprendizagem. O agente MAE monitora o comportamento do aluno através de uma máquina de inferência fuzzy das relações entre as variáveis esforço, persistência e desempenho e aciona um sistema de feedback através do agente pedagógico animado (PAT). O feedback realizado pelo agente pedagógico animado apresenta ao aluno comportamentos verbais e físicos afetivos. O agente MAE está inserido no ambiente InteliWeb, que oferece um material instrucional de Biociências e foi implementado com Servlets e páginas JSP. A maior contribuição desta tese está na agregação de aspectos da auto-eficácia no modelo de aluno envolvido em situações de ensino aprendizagem de alunos, avançando dentro da perspectiva de pesquisa do GIA, assim como o desenvolvimento do InteliWeb com a inserção do agente MAE e sua máquina de inferência fuzzy.