998 resultados para Sistemas caóticos
Resumo:
Tesis (Maestría en Ciencias en Ingenería Eléctrica, con especialidad en Control) U.A.N.L.
Resumo:
El problema central que aborda esta tesis doctoral es el estudio de la correspondencia entre la mecanica clasica y la mecanica cuantica en sistemas hamiltonianos clasicamente caoticos, tema que se enmarca dentro del llamado caos cuantico. En concreto, en este trabajo proponemos un nuevo y efectivo metodo para calcular las autofunciones de sistemas caoticos usando una base de funciones de scar. Dichas funciones de scar juegan un papel fundamental en el estudio de las manifestaciones cuanticas del caos, ya que se trata de funciones de onda semiclasicas con una dispersion muy peque~na y localizadas a lo largo de las variedades invariantes de las orbitas periodicas inestables del sistema que conforman la estructura organizativa del caos clasico. El metodo de calculo desarrollado se ha denominado Metodo de Gram- Schmidt Selectivo (MGSS), dado que construye la base haciendo uso del metodo de Gram{Schmidt convencional pero teniendo en cuenta, ademas, la dispersi on de las funciones de scar y la longitud de la orbita periodica a lo largo de la cual se localizan. El MGSS nos ha permitido calcular con gran precision las 2400 autofunciones con menor energa de un oscilador cuartico altamente caotico con dos grados de libertad acoplados, as como autofunciones muy excitadas en una ventana de energa, utilizando en ambos casos una base mucho mas eciente que las descritas en la literatura. Ademas, hemos empleado el MGSS para calcular las autofunciones del sistema molecular LiNC/LiCN, que presenta un espacio de fases con zonas de regularidad y con regiones en las que el movimiento es altamente caotico; en este ultimo sistema, hemos calculado de forma muy eciente las autofunciones asociadas a las primeras 66 energas. Finalmente, hemos propuesto un metodo perturbativo para calcular velocidades de reaccion en sistemas abiertos descritos por potenciales anarmonicos. Con este metodo, hemos calculado la velocidad de reaccion de distintos potenciales de uno y dos grados de libertad, as como la velocidad de isomerizacion del sistema molecular LiNC/LiCN, tanto sometido a un ruido blanco (sin correlaciones) como en presencia de un ba~no de atomos de argon, lo que constituye un entorno con correlaciones. El metodo desarrollado es independiente de la supercie divisoria y nos ha permitido obtener correcciones analticas a la famosa formula de Kramers, lo que posibilita el calculo exacto de velocidades de reaccion en potenciales anarmonicos que interaccionan con el entorno.
Resumo:
The extraordinary increase of new information technologies, the development of Internet, the electronic commerce, the e-government, mobile telephony and future cloud computing and storage, have provided great benefits in all areas of society. Besides these, there are new challenges for the protection of information, such as the loss of confidentiality and integrity of electronic documents. Cryptography plays a key role by providing the necessary tools to ensure the safety of these new media. It is imperative to intensify the research in this area, to meet the growing demand for new secure cryptographic techniques. The theory of chaotic nonlinear dynamical systems and the theory of cryptography give rise to the chaotic cryptography, which is the field of study of this thesis. The link between cryptography and chaotic systems is still subject of intense study. The combination of apparently stochastic behavior, the properties of sensitivity to initial conditions and parameters, ergodicity, mixing, and the fact that periodic points are dense, suggests that chaotic orbits resemble random sequences. This fact, and the ability to synchronize multiple chaotic systems, initially described by Pecora and Carroll, has generated an avalanche of research papers that relate cryptography and chaos. The chaotic cryptography addresses two fundamental design paradigms. In the first paradigm, chaotic cryptosystems are designed using continuous time, mainly based on chaotic synchronization techniques; they are implemented with analog circuits or by computer simulation. In the second paradigm, chaotic cryptosystems are constructed using discrete time and generally do not depend on chaos synchronization techniques. The contributions in this thesis involve three aspects about chaotic cryptography. The first one is a theoretical analysis of the geometric properties of some of the most employed chaotic attractors for the design of chaotic cryptosystems. The second one is the cryptanalysis of continuos chaotic cryptosystems and finally concludes with three new designs of cryptographically secure chaotic pseudorandom generators. The main accomplishments contained in this thesis are: v Development of a method for determining the parameters of some double scroll chaotic systems, including Lorenz system and Chua’s circuit. First, some geometrical characteristics of chaotic system have been used to reduce the search space of parameters. Next, a scheme based on the synchronization of chaotic systems was built. The geometric properties have been employed as matching criterion, to determine the values of the parameters with the desired accuracy. The method is not affected by a moderate amount of noise in the waveform. The proposed method has been applied to find security flaws in the continuous chaotic encryption systems. Based on previous results, the chaotic ciphers proposed by Wang and Bu and those proposed by Xu and Li are cryptanalyzed. We propose some solutions to improve the cryptosystems, although very limited because these systems are not suitable for use in cryptography. Development of a method for determining the parameters of the Lorenz system, when it is used in the design of two-channel cryptosystem. The method uses the geometric properties of the Lorenz system. The search space of parameters has been reduced. Next, the parameters have been accurately determined from the ciphertext. The method has been applied to cryptanalysis of an encryption scheme proposed by Jiang. In 2005, Gunay et al. proposed a chaotic encryption system based on a cellular neural network implementation of Chua’s circuit. This scheme has been cryptanalyzed. Some gaps in security design have been identified. Based on the theoretical results of digital chaotic systems and cryptanalysis of several chaotic ciphers recently proposed, a family of pseudorandom generators has been designed using finite precision. The design is based on the coupling of several piecewise linear chaotic maps. Based on the above results a new family of chaotic pseudorandom generators named Trident has been designed. These generators have been specially designed to meet the needs of real-time encryption of mobile technology. According to the above results, this thesis proposes another family of pseudorandom generators called Trifork. These generators are based on a combination of perturbed Lagged Fibonacci generators. This family of generators is cryptographically secure and suitable for use in real-time encryption. Detailed analysis shows that the proposed pseudorandom generator can provide fast encryption speed and a high level of security, at the same time. El extraordinario auge de las nuevas tecnologías de la información, el desarrollo de Internet, el comercio electrónico, la administración electrónica, la telefonía móvil y la futura computación y almacenamiento en la nube, han proporcionado grandes beneficios en todos los ámbitos de la sociedad. Junto a éstos, se presentan nuevos retos para la protección de la información, como la suplantación de personalidad y la pérdida de la confidencialidad e integridad de los documentos electrónicos. La criptografía juega un papel fundamental aportando las herramientas necesarias para garantizar la seguridad de estos nuevos medios, pero es imperativo intensificar la investigación en este ámbito para dar respuesta a la demanda creciente de nuevas técnicas criptográficas seguras. La teoría de los sistemas dinámicos no lineales junto a la criptografía dan lugar a la ((criptografía caótica)), que es el campo de estudio de esta tesis. El vínculo entre la criptografía y los sistemas caóticos continúa siendo objeto de un intenso estudio. La combinación del comportamiento aparentemente estocástico, las propiedades de sensibilidad a las condiciones iniciales y a los parámetros, la ergodicidad, la mezcla, y que los puntos periódicos sean densos asemejan las órbitas caóticas a secuencias aleatorias, lo que supone su potencial utilización en el enmascaramiento de mensajes. Este hecho, junto a la posibilidad de sincronizar varios sistemas caóticos descrita inicialmente en los trabajos de Pecora y Carroll, ha generado una avalancha de trabajos de investigación donde se plantean muchas ideas sobre la forma de realizar sistemas de comunicaciones seguros, relacionando así la criptografía y el caos. La criptografía caótica aborda dos paradigmas de diseño fundamentales. En el primero, los criptosistemas caóticos se diseñan utilizando circuitos analógicos, principalmente basados en las técnicas de sincronización caótica; en el segundo, los criptosistemas caóticos se construyen en circuitos discretos u ordenadores, y generalmente no dependen de las técnicas de sincronización del caos. Nuestra contribución en esta tesis implica tres aspectos sobre el cifrado caótico. En primer lugar, se realiza un análisis teórico de las propiedades geométricas de algunos de los sistemas caóticos más empleados en el diseño de criptosistemas caóticos vii continuos; en segundo lugar, se realiza el criptoanálisis de cifrados caóticos continuos basados en el análisis anterior; y, finalmente, se realizan tres nuevas propuestas de diseño de generadores de secuencias pseudoaleatorias criptográficamente seguros y rápidos. La primera parte de esta memoria realiza un análisis crítico acerca de la seguridad de los criptosistemas caóticos, llegando a la conclusión de que la gran mayoría de los algoritmos de cifrado caóticos continuos —ya sean realizados físicamente o programados numéricamente— tienen serios inconvenientes para proteger la confidencialidad de la información ya que son inseguros e ineficientes. Asimismo una gran parte de los criptosistemas caóticos discretos propuestos se consideran inseguros y otros no han sido atacados por lo que se considera necesario más trabajo de criptoanálisis. Esta parte concluye señalando las principales debilidades encontradas en los criptosistemas analizados y algunas recomendaciones para su mejora. En la segunda parte se diseña un método de criptoanálisis que permite la identificaci ón de los parámetros, que en general forman parte de la clave, de algoritmos de cifrado basados en sistemas caóticos de Lorenz y similares, que utilizan los esquemas de sincronización excitador-respuesta. Este método se basa en algunas características geométricas del atractor de Lorenz. El método diseñado se ha empleado para criptoanalizar eficientemente tres algoritmos de cifrado. Finalmente se realiza el criptoanálisis de otros dos esquemas de cifrado propuestos recientemente. La tercera parte de la tesis abarca el diseño de generadores de secuencias pseudoaleatorias criptográficamente seguras, basadas en aplicaciones caóticas, realizando las pruebas estadísticas, que corroboran las propiedades de aleatoriedad. Estos generadores pueden ser utilizados en el desarrollo de sistemas de cifrado en flujo y para cubrir las necesidades del cifrado en tiempo real. Una cuestión importante en el diseño de sistemas de cifrado discreto caótico es la degradación dinámica debida a la precisión finita; sin embargo, la mayoría de los diseñadores de sistemas de cifrado discreto caótico no ha considerado seriamente este aspecto. En esta tesis se hace hincapié en la importancia de esta cuestión y se contribuye a su esclarecimiento con algunas consideraciones iniciales. Ya que las cuestiones teóricas sobre la dinámica de la degradación de los sistemas caóticos digitales no ha sido totalmente resuelta, en este trabajo utilizamos algunas soluciones prácticas para evitar esta dificultad teórica. Entre las técnicas posibles, se proponen y evalúan varias soluciones, como operaciones de rotación de bits y desplazamiento de bits, que combinadas con la variación dinámica de parámetros y con la perturbación cruzada, proporcionan un excelente remedio al problema de la degradación dinámica. Además de los problemas de seguridad sobre la degradación dinámica, muchos criptosistemas se rompen debido a su diseño descuidado, no a causa de los defectos esenciales de los sistemas caóticos digitales. Este hecho se ha tomado en cuenta en esta tesis y se ha logrado el diseño de generadores pseudoaleatorios caóticos criptogr áficamente seguros.
Resumo:
El presente texto se resume históricamente el estudio de los sistemas caóticos y se muestran las implicaciones que el paradigma de los sistemas dinámicos complejos tiene para la lingüística. Por último, se refieren algunas líneas de investigación actuale y se sugieren otras venideras.
Resumo:
A previsão de valores futuros em séries temporais produzidas por sistemas caóticos pode ser aplicada em diversas áreas do conhecimento como Astronomia, Economia, Física, Medicina, Meteorologia e Oceanografia. O método empregado consiste na reconstrução do espaço de fase seguido de um termo de melhoria da previsão. As rotinas utilizadas para a previsão e análise nesta linha de pesquisa fazem parte do pacote TimeS, que apresenta resultados encorajadores nas suas aplicações. O aperfeiçoamento das rotinas computacionais do pacote com vistas à melhoria da acurácia obtida e à redução do tempo computacional é construído a partir da investigação criteriosa da minimização empregada na obtenção do mapa global. As bases matemáticas são estabelecidas e novas rotinas computacionais são criadas. São ampliadas as possibilidades de funções de ajuste que podem incluir termos transcendentais nos componentes dos vetores reconstruídos e também possuir termos lineares ou não lineares nos parâmetros de ajuste. O ganho de eficiência atingido permite a realização de previsões e análises que respondem a perguntas importantes relacionadas ao método de previsão e ampliam a possibilidade de aplicações a séries reais.
Resumo:
Los resultados financieros de las organizaciones son objeto de estudio y análisis permanente, predecir sus comportamientos es una tarea permanente de empresarios, inversionistas, analistas y académicos. En el presente trabajo se explora el impacto del tamaño de los activos (valor total de los activos) en la cuenta de resultados operativos y netos, analizando inicialmente la relación entre dichas variables con indicadores tradicionales del análisis financiero como es el caso de la rentabilidad operativa y neta y con elementos de estadística descriptiva que permiten calificar los datos utilizados como lineales o no lineales. Descubriendo posteriormente que los resultados financieros de las empresas vigiladas por la Superintendencia de Sociedades para el año 2012, tienen un comportamiento no lineal, de esta manera se procede a analizar la relación de los activos y los resultados con la utilización de espacios de fase y análisis de recurrencia, herramientas útiles para sistemas caóticos y complejos. Para el desarrollo de la investigación y la revisión de la relación entre las variables de activos y resultados financieros se tomó como fuente de información los reportes financieros del cierre del año 2012 de la Superintendencia de Sociedades (Superintendencia de Sociedades, 2012).
Resumo:
Neste trabalho utiliza-se como sistema dinâmico o circuito eletrônico que integra o sistema de equações acopladas de Rossler modificado. Este sistema possui uma nãolinearidade dada por uma função linear por partes e apresenta comportamento caótico para certos valores dos seus parâmetros. Isto e evidenciado pela rota de dobramento de período obtida variando-se um dos parâmetros do sistema. A caracterização experimental da dinâmica do sistema Rossler modificado e realizada através do diagrama de bifurcações. Apresenta-se uma fundamentação teórica de sistemas dinâmicos introduzindo conceitos importantes tais como atratores estranhos, variedades invariantes e tamb em uma análise da estabilidade de comportamentos assintóticos como pontos fixos e ciclos limites. Para uma caracterização métrica do caos, apresenta-se a definção dos expoentes de Lyapunov. São introduzidos também os expoentes de Lyapunov condicionais e transversais, que estão relacionados com a teoria de sincronizção de sistemas caóticos. A partir de uma montagem mestre-escravo, onde dois osciladores de Rossler estão acoplados unidirecionalmente, introduz-se a de nição de sincronização idêntica, sincronização de fase e variedade de sincronização. Demonstra-se a possibilidade de sincronização em uma rede de osciladores caóticos de Rossler, acoplados simetricamente via acoplamento de primeiros vizinhos. A rede composta por seis osciladores mostrou ser adequada pelo fato de apresentar uma rica estrutura espacial e, ao mesmo tempo, ser experimentalmente implementável. Além da sincronização global (osciladores identicamente sincronizados), obtém-se a sincronização parcial, onde parte dos osciladores sincronizam entre si e a outra parte não o faz. Esse tipo de sincronização abre a possibilidade da formação de padrões de sincronização e, portanto, exibe uma rica estrutura de comportamentos dinâmicos. A sincronização parcial e investigada em detalhes e apresentam-se vários resultados. A principal ferramenta utilizada na análise experimental e numérica e a inspeção visual do gráfico yi yj , fazendo todas as combinações entre elementos diferentes (i e j) da rede. Na análise numérica obtém-se como resultado complementar o máximo expoente de Lyapunov transversal, que descreve a estabilidade da variedade de sincronização global.
Resumo:
Apresentamos aqui o modelo esférico quântico de vidro de spin usando a aproximação de recozimento. São calculadas a energia livre, bem como a temperatura crítica em função do momentum de inércia e a entropia. São consideradas interações aleatórias de longo alcance (campo médio) com distribuição normal de média zero, e a energia cinética de cada spin. O cálculo é feito utilizando o formalismo funcional de Feynman de integrais de caminhos. O limite clássico é apresentado e coincide com o limite conhecido de teorias anteriores.
Resumo:
Synchronization in nonlinear dynamical systems, especially in chaotic systems, is field of research in several areas of knowledge, such as Mechanical Engineering and Electrical Engineering, Biology, Physics, among others. In simple terms, two systems are synchronized if after a certain time, they have similar behavior or occurring at the same time. The sound and image in a film is an example of this phenomenon in our daily lives. The studies of synchronization include studies of continuous dynamic systems, governed by differential equations or studies of discrete time dynamical systems, also called maps. Maps correspond, in general, discretizations of differential equations and are widely used to model physical systems, mainly due to its ease of computational. It is enough to make iterations from given initial conditions for knowing the trajectories of system. This completion of course work based on the study of the map called ”Zaslavksy Web Map”. The Zaslavksy Web Map is a result of the combination of the movements of a particle in a constant magnetic field and a wave electrostatic propagating perpendicular to the magnetic field. Apart from interest in the particularities of this map, there was objective the deepening of concepts of nonlinear dynamics, as equilibrium points, linear stability, stability non-linear, bifurcation and chaos
Resumo:
The chaotic behavior has been widely observed in nature, from physical and chemical phenomena to biological systems, present in many engineering applications and found in both simple mechanical oscillators and advanced communication systems. With regard to mechanical systems, the effects of nonlinearities on the dynamic behavior of the system are often of undesirable character, which has motivated the development of compensation strategies. However, it has been recently found that there are situations in which the richness of nonlinear dynamics becomes attractive. Due to their parametric sensitivity, chaotic systems can suffer considerable changes by small variations on the value of their parameters, which is extremely favorable when we want to give greater flexibility to the controlled system. Hence, we analyze in this work the parametric sensitivity of Duffing oscillator, in particular its unstable periodic orbits and Poincar´e section due to changes in nominal value of the parameter that multiplies the cubic term. Since the amount of energy needed to stabilize Unstable Periodic Orbits is minimum, we analyze the control action needed to control and stabilize such orbits which belong to different versions of the Duffing oscillator. For that we will use a smoothed sliding mode controller with an adaptive compensation term based on Fourier series.
Resumo:
En este trabajo, se presenta una estrategia de sincronización para la clase más simple de sistemas caóticos, conocida como clase P. El problema de sincronización es tratado mediante la aplicación de la teoría de observadores de estado para reconstruir las señales. Además, se presenta un estudio donde la estrategia de sincronización propuesta es aplicada al problema de cifrado de información en un sistema de comunicaciones seguras. Se presentan resultados en simulación, donde se ilustra el desempeño de este esquema y su potencial en aplicaciones de comunicación segura
Resumo:
Nesta dissertação estudámos as séries temporais que representam a complexa dinâmica do comportamento. Demos especial atenção às técnicas de dinâmica não linear. As técnicas fornecem-nos uma quantidade de índices quantitativos que servem para descrever as propriedades dinâmicas do sistema. Estes índices têm sido intensivamente usados nos últimos anos em aplicações práticas em Psicologia. Estudámos alguns conceitos básicos de dinâmica não linear, as características dos sistemas caóticos e algumas grandezas que caracterizam os sistemas dinâmicos, que incluem a dimensão fractal, que indica a complexidade de informação contida na série temporal, os expoentes de Lyapunov, que indicam a taxa com que pontos arbitrariamente próximos no espaço de fases da representação do espaço dinâmico, divergem ao longo do tempo, ou a entropia aproximada, que mede o grau de imprevisibilidade de uma série temporal. Esta informação pode então ser usada para compreender, e possivelmente prever, o comportamento. ABSTRACT: ln this thesis we studied the time series that represent the complex dynamic behavior. We focused on techniques of nonlinear dynamics. The techniques provide us a number of quantitative indices used to describe the dynamic properties of the system. These indices have been extensively used in recent years in practical applications in psychology. We studied some basic concepts of nonlinear dynamics, the characteristics of chaotic systems and some quantities that characterize the dynamic systems, including fractal dimension, indicating the complexity of information in the series, the Lyapunov exponents, which indicate the rate at that arbitrarily dose points in phase space representation of a dynamic, vary over time, or the approximate entropy, which measures the degree of unpredictability of a series. This information can then be used to understand and possibly predict the behavior.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Esta tesis vincula el estudio de los sistemas dinámicos caóticos con la teoría del control para explorar la relación que existe entre los métodos de control del caos y las reglas de política monetaria. En ambos casos está presente un objetivo estabilizador; de una parte, los métodos de control del caos buscan corregir movimientos irregulares estabilizando alguna de las orbitas periódicas inestables que se encuentran en un atractor extraño, esto es, llevar al sistema de un comportamiento caótico a un comportamiento regular; mientras que en economía, los policy maker fijan una meta para las variables objetivo de política y buscan que el valor fijado coincida con el valor observado. La forma con la cual se estabiliza es a través del empleo de reglas de control realimentado que operan reduciendo la diferencia entre el valor observado para la variable y su valor fijado, empleando para ello un instrumento de control. Así, las reglas de control de sistemas dinámicos caóticos y las reglas de política tienen como objetivo que el sistema en el cual sean aplicadas tenga un comportamiento deseado. Buscamos aplicar en esta tesis las técnicas de control de los sistemas dinámicos caóticos, en particular, el método OGY de control del caos, al diseño de reglas de política monetaria para comprobar su potencial estabilizador en las variables económicas. Pretendemos mostrar que el caos se puede controlar y que los métodos desarrollados para su control pueden servir de herramientas prácticas para la elaboración de políticas de estabilización. El método que empleamos aquí se puede aplicar en cualquier sistema dinámico que presente comportamiento caótico...
Resumo:
A presente dissertação versa sobre a sincronização idêntica em redes de osciladores caóticos. Uma perspectiva razoavelmente histórica sobre a literatura da área é apresentada . O conceito de caos é introduzido junto com outras idéias da dinâmica não-linear: sistemas dinâmicos, exemplos de sistemas, atratores, expoentes de Liapunov, etc. A integração numérica de equações diferenciais é largamente utilizada, principalmente, para o cálculo de expoentes e o desenho do diagrama de fases. A sincronização idêntica é definida, inicialmente, em redes que não passam de um par de osciladores. A variedade de sincronização (conjunto de pontos no espaço de fases no qual a solução do sistema é encontrada se há sincronização) é determinada. Diferentes variantes de acoplamentos lineares são enfocadas: acoplamento interno, externo, do tipo mestre-escravo e birecional, entre outras. Para detectar sincronização, usa-se o conceito de expoente de Liapunov transversal, uma extensão do conceito clássico de expoente de Liapunov que caracteriza a sincronização como a existência de um atrator na variedade de sincronização. A exposição é completada com exemplos e atinge relativo detalhe sobre o assunto, sem deixar de ser sintética com relação à ampla literatura existente. Um caso de sincronização em antifase que usa a mesma análise é incluído. A sincronização idêntica também é estudada em redes de osciladores idênticos com mais de dois osciladores. As possibilidades de sincronização completa e parcial são explanadas. As técnicas usadas para um par de osciladores são expandidas para cobrir este novo tipo de redes. A existência de variedades de sincronização invariantes é considerada como fator determinante para a sincronização. A sincronização parcial gera estruturas espaciais, analisadas sob a denominação de padrões. Algumas relações importantes entre as sincronizações são explicitadas, principalmente as degenerescências e a relação entre a sincronização parcial e a sincronização completa do respectivo estado sincronizado para alguns tipos de acoplamento. Ainda são objetos de interesse as redes formadas por grupos de osciladores idênticos que são diferentes dos osciladores dos outros grupos. A sincronização parcial na qual todos os grupos de osciladores têm seus elementos sincronizados é chamada de sincronização primária. A sincronização secundária é qualquer outro tipo de sincronização parcial. Ambas são exemplificadas e analisadas por meio dos expoentes transversais e novamente por meio da existência de invariantes de sincronização. Obtém-se, então, uma caracterização suficientemente ampla, completada por casos específicos.