1000 resultados para Sistema de inferência nebulosa
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de mestre em Engenharia e Gestão Industrial
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A eficiência e a racionalidade energética da iluminação pública têm relevante importância no sistema elétrico, porque contribui para diminuir a necessidade de investimentos na construção de novas fontes geradoras de energia elétrica e nos desperdícios energéticos. Apresenta-se como objetivo deste trabalho de pesquisa o desenvolvimento e aplicação do IDE (índice de desempenho energético), fundamentado no sistema de inferência nebulosa e indicadores de eficiência e racionalidade de uso da energia elétrica. A opção em utilizar a inferência nebulosa deve-se aos fatos de sua capacidade de reproduzir parte do raciocínio humano, e estabelecer relação entre a diversidade de indicadores envolvidos. Para a consecução do sistema de inferência nebulosa, foram definidas como variáveis de entrada: os indicadores de eficiência e racionalidade; o método de inferência foi baseado em regras produzidas por especialista em iluminação pública, e como saída um número real que caracteriza o IDE. Os indicadores de eficiência e racionalidade são divididos em duas classes: globais e específicos. Os indicadores globais são: FP (fator de potência), FC (fator de carga) e FD (fator de demanda). Os indicadores específicos são: FU (fator de utilização), ICA (consumo de energia por área iluminada), IE (intensidade energética) e IL (intensidade de iluminação natural). Para a aplicação deste trabalho, foi selecionada e caracterizada a iluminação pública da Cidade Universitária \"Armando de Salles Oliveira\" da Universidade de São Paulo. Sendo assim, o gestor do sistema de iluminação, a partir do índice desenvolvido neste trabalho, dispõe de condições para avaliar o uso da energia elétrica e, desta forma, elaborar e simular estratégias com o objetivo de economizá-la.
Resumo:
Nowadays, where the market competition requires products with better quality and a constant search for cost savings and a better use of raw materials, the research for more efficient control strategies becomes vital. In Natural Gas Processin Units (NGPUs), as in the most chemical processes, the quality control is accomplished through their products composition. However, the chemical composition analysis has a long measurement time, even when performed by instruments such as gas chromatographs. This fact hinders the development of control strategies to provide a better process yield. The natural gas processing is one of the most important activities in the petroleum industry. The main economic product of a NGPU is the liquefied petroleum gas (LPG). The LPG is ideally composed by propane and butane, however, in practice, its composition has some contaminants, such as ethane and pentane. In this work is proposed an inferential system using neural networks to estimate the ethane and pentane mole fractions in LPG and the propane mole fraction in residual gas. The goal is to provide the values of these estimated variables in every minute using a single multilayer neural network, making it possibly to apply inferential control techniques in order to monitor the LPG quality and to reduce the propane loss in the process. To develop this work a NGPU was simulated in HYSYS R software, composed by two distillation collumns: deethanizer and debutanizer. The inference is performed through the process variables of the PID controllers present in the instrumentation of these columns. To reduce the complexity of the inferential neural network is used the statistical technique of principal component analysis to decrease the number of network inputs, thus forming a hybrid inferential system. It is also proposed in this work a simple strategy to correct the inferential system in real-time, based on measurements of the chromatographs which may exist in process under study
Resumo:
Um sistema de inferência fuzzy foi desenvolvido baseado em dados da literatura para predição do consumo de ração, ganho de peso e conversão alimentar de frangos de corte com idade variando de 1 a 21, dias submetidos a diferentes condições térmicas. O sistema fuzzy foi estruturado com base em três variáveis de entrada: idade das aves (semanas), temperatura (°C) e umidade relativa (%) ambientes, sendo que as variáveis de saída consideradas foram: ganho de peso, consumo de ração e conversão alimentar. A inferência foi realizada por meio do método de Mamdani, que consistiu na elaboração de 45 regras e a defuzzificação por meio do método do Centro de Gravidade. Com base nos resultados, ao se compararem os dados da literatura com os obtidos pelo sistema fuzzy proposto, verificou-se desempenho satisfatório na predição das variáveis respostas, com R² da ordem de 0,995; 0,998 e 0,976, respectivamente. O ganho de peso predito pela lógica fuzzy foi validado com dados experimentais de campo, no qual se obteve R² = 0,975, apresentando grande potencial de uso em sistemas de climatização automatizado.
Resumo:
Este trabalho apresenta a estruturação de um controle difuso, para a automação de reatores seqüenciais em batelada (RSB), no processo de remoção biológica de matéria orgânica e nitrogênio em águas residuárias domésticas, utilizando parâmetros inferenciais, pH, ORP e OD, em que as variáveis controladas foram as durações da reação aeróbia e anóxica. O experimento, em escala de bancada, foi composto por dois reatores seqüenciais em batelada, com volume útil de 10 L, no qual 6 L foram alimentados com esgoto sintético, com características de águas residuárias domésticas. O sistema de automação foi composto pela aquisição dos parâmetros eletroquímicos (pH, ORP e OD), pelos dispositivos atuadores (motor-bomba, aerador e misturador) e pelo controle predeterminado ou difuso. O programa computacional CONRSB foi implementado de forma a integrar o sistema de automação. O controle difuso, implementado, foi constituído pelos procedimentos de: normalização, nebulização, inferência, desnebulização e desnormalização. As variáveis de entrada para o controlador difuso, durante o período: aeróbio foram dpH/dt, dpH/d(t-1) e o pH ; anóxico foram dORP/dt, dORP/d(t-1) e o OD. As normalizações das variáveis crisps estiveram no universo de [0,1], utilizando os valores extremos do ciclo 1 ao 70. Nas nebulizações foram aplicadas as funções triangulares, as quais representaram, satisfatoriamente, as indeterminações dos parâmetros. A inferência nebulosa foi por meio da base heurística (regras), com amparo do especialista, em que a implicação de Mamdani foi aplicada Nessas implicações foram utilizadas dezoito expressões simbólicas para cada período, aeróbio e anóxico. O método de desnebulização foi pelo centro de áreas, que se mostrou eficaz em termos de tempo de processamento. Para a sintonia do controlador difuso empregou-se o programa computacional MATLAB, juntamente com as rotinas Fuzzy logic toolbox e o Simulink. O intervalo entre as atuações do controlador difuso, ficou estabelecido em 5,0 minutos, sendo obtido por meio de tentativas. A operação do RSB 1, durante os 85 ciclos, apresentou a relação média DBO/NTK de 4,67 mg DBO/mg N, sendo classificado como processo combinado de oxidação de carbono e nitrificação. A relação média alimento/microrganismo foi de 0,11 kg DBO/kg sólido suspenso volátil no licor misto.dia, enquadrando nos sistemas com aeração prolongada, em que a idade do lodo correspondeu aos 29 dias. O índice volumétrico do lodo médio foi de 117,5 mL/g, indicando uma sedimentação com características médias. As eficiências médias no processo de remoção de carbono e nitrogênio foram de 90,8% (como DQO) e 49,8%, respectivamente. As taxas específicas médias diárias, no processo de nitrificação e desnitrificação, foram de 24,2g N/kg SSVLM.dia e 15,5 g N/kg SSVLM.dia, respectivamente. O monitoramento, em tempo real, do pH, ORP e OD, mostrou ter um grande potencial no controle dos processos biológicos, em que o pH foi mais representativo no período aeróbio, sendo o ORP e o OD mais representativos no período anóxico. A operação do RSB com o controlador difuso, apresentou do ciclo 71 ao 85, as eficiências médias no processo de remoção de carbono e nitrogênio de 96,4% (como DQO) e 76,4%, respectivamente. A duração média do período aeróbio foi de 162,1 minutos, que tomando como referência o período máximo de 200,0 minutos, reduziu em 19,0% esses períodos. A duração média do período anóxico foi de 164,4 minutos, que tomando como referência o período máximo de 290,0 minutos, apresentou uma redução de 43,3%, mostrando a atuação robusta do controlador difuso. O estudo do perfil temporal, no ciclo 85, mostrou a atuação efetiva do controlador difuso, associada aos pontos de controle nos processos biológicos do RSB. Nesse ciclo, as taxas máximas específicas de nitrificação e desnitrificação observadas, foram de 32,7 g NO3 --N/kg sólido suspenso volátil no licor misto.dia e 43,2g NO3 --N/kg sólido suspenso volátil no licor misto.dia, respectivamente.
Resumo:
Pós-graduação em Engenharia Mecânica - FEB
Resumo:
Este trabalho ressalta a importância de monitorar e diagnosticar a qualidade de energia elétrica sob a ótica das distorções harmônicas presente nas instalações elétricas em sistema trifásico de baixa tensão através de uma proposta metodológica para analisar e diagnosticar o nível dos distúrbios harmônico avaliando o indicador total de distorção harmônica (THD), apoiado por um sistema especialista baseado em um sistema de inferência Fuzzy.
Resumo:
Desde a incorporação da automação no processo produtivo, a busca por sistemas mais eficientes, objetivando o aumento da produtividade e da qualidade dos produtos e serviços, direcionou os estudos para o planejamento de estratégias que permitissem o monitoramento de sistemas com o intuito principal de torna-los mais autônomos e robustos. Por esse motivo, as pesquisas envolvendo o diagnóstico de faltas em sistemas industriais tornaram-se mais intensivas, visto a necessidade da incorporação de técnicas para monitoramente detalhado de sistemas. Tais técnicas permitem a verificação de perturbações, falta ou mesmo falhas. Em vista disso, essa trabalho investiga técnicas de detecção e diagnostico de faltas e sua aplicação em motores de indução trifásicos, delimitando o seu estudo em duas situações: sistemas livre de faltas, e sobre atuação da falta incipiente do tipo curto-circuitoparcial nas espiras do enrolamento do estator. Para a detecção de faltas, utilizou-se analise paramétrica dos parâmetros de um modelo de tempo discreto, de primeira ordem, na estrutura autoregressivo com entradas exógenas (ARX). Os parâmetros do modelo ARX, que trazem informação sobre a dinâmica dominante do sistema, são obtidos recursivamente pela técnica dos mínimos quadrados recursivos (MQR). Para avaliação da falta, foi desenvolvido um sistema de inferência fuzzy (SIF) intervala do tipo-2, cuja mancha de incerteza ou footprint of uncertainty (FOU), características de sistema fuzzy tipo-2, é ideal como forma de representar ruídos inerentes a sistemas reais e erros numéricos provenientes do processo de estimação paramétrica. Os parâmetros do modelo ARX são entradas para o SIF. Algoritmos genéricos (AG’s) foram utilizados para otimização dos SIF intervalares tipo-2, objetivando reduzir o erro de diagnóstico da falta identificada na saída desses sistemas. Os resultados obtidos em teste de simulação computacional demonstram a efetividade da metodologia proposta.
Resumo:
The present work develops a fuzzy inference system to control the rotation speed of a DC motor available in Degem Kit. Therefore, it should use the fuzzy toolbox of Matlab in conjunction with the data acquisition board NI - USB - 6009, a National Instrument’s board. An introduction to fuzzy logic, the mathematical model of a DC motor and the operation of data acquisition board is presented first. Followed by the controller fuzzy model implemented using Simulink which is described in detail. Finally, the prototype is shown and the simulator results are presented
Resumo:
A oportunidade de produção de biomassa microalgal tem despertado interesse pelos diversos destinos que a mesma pode ter, seja na produção de bioenergia, como fonte de alimento ou servindo como produto da biofixação de dióxido de carbono. Em geral, a produção em larga escala de cianobactérias e microalgas é feita com acompanhamento através de análises físicoquímicas offline. Neste contexto, o objetivo deste trabalho foi monitorar a concentração celular em fotobiorreator raceway para produção de biomassa microalgal usando técnicas de aquisição digital de dados e controle de processos, pela aquisição de dados inline de iluminância, concentração de biomassa, temperatura e pH. Para tal fim foi necessário construir sensor baseado em software capaz de determinar a concentração de biomassa microalgal a partir de medidas ópticas de intensidade de radiação monocromática espalhada e desenvolver modelo matemático para a produção da biomassa microalgal no microcontrolador, utilizando algoritmo de computação natural no ajuste do modelo. Foi projetado, construído e testado durante cultivos de Spirulina sp. LEB 18, em escala piloto outdoor, um sistema autônomo de registro de informações advindas do cultivo. Foi testado um sensor de concentração de biomassa baseado na medição da radiação passante. Em uma segunda etapa foi concebido, construído e testado um sensor óptico de concentração de biomassa de Spirulina sp. LEB 18 baseado na medição da intensidade da radiação que sofre espalhamento pela suspensão da cianobactéria, em experimento no laboratório, sob condições controladas de luminosidade, temperatura e fluxo de suspensão de biomassa. A partir das medidas de espalhamento da radiação luminosa, foi construído um sistema de inferência neurofuzzy, que serve como um sensor por software da concentração de biomassa em cultivo. Por fim, a partir das concentrações de biomassa de cultivo, ao longo do tempo, foi prospectado o uso da plataforma Arduino na modelagem empírica da cinética de crescimento, usando a Equação de Verhulst. As medidas realizadas no sensor óptico baseado na medida da intensidade da radiação monocromática passante através da suspensão, usado em condições outdoor, apresentaram baixa correlação entre a concentração de biomassa e a radiação, mesmo para concentrações abaixo de 0,6 g/L. Quando da investigação do espalhamento óptico pela suspensão do cultivo, para os ângulos de 45º e 90º a radiação monocromática em 530 nm apresentou um comportamento linear crescente com a concentração, apresentando coeficiente de determinação, nos dois casos, 0,95. Foi possível construir um sensor de concentração de biomassa baseado em software, usando as informações combinadas de intensidade de radiação espalhada nos ângulos de 45º e 135º com coeficiente de determinação de 0,99. É factível realizar simultaneamente a determinação inline de variáveis do processo de cultivo de Spirulina e a modelagem cinética empírica do crescimento do micro-organismo através da equação de Verhulst, em microcontrolador Arduino.
Resumo:
Artificial Intelligence techniques are applied to improve performance of a simulated oil distillation system. The chosen system was a debutanizer column. At this process, the feed, which comes to the column, is segmented by heating. The lightest components become steams, by forming the LPG (Liquefied Petroleum Gas). The others components, C5+, continue liquid. In the composition of the LPG, ideally, we have only propane and butanes, but, in practice, there are contaminants, for example, pentanes. The objective of this work is to control pentane amount in LPG, by means of intelligent set points (SP s) determination for PID controllers that are present in original instrumentation (regulatory control) of the column. A fuzzy system will be responsible for adjusting the SP's, driven by the comparison between the molar fraction of the pentane present in the output of the plant (LPG) and the desired amount. However, the molar fraction of pentane is difficult to measure on-line, due to constraints such as: long intervals of measurement, high reliability and low cost. Therefore, an inference system was used, based on a multilayer neural network, to infer the pentane molar fraction through secondary variables of the column. Finally, the results shown that the proposed control system were able to control the value of pentane molar fraction under different operational situations
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Este trabalho utiliza a metodologia six sigma com o objetivo de aumentar a produtividade da Linha de LCD (Liquid Crystal Display) em uma fábrica do Pólo Industrial de Manaus - PIM e um sistema de inferência fuzzy para mensurar o aumento dessa produtividade, onde foram identificados vários parâmetros baseados na metodologia six sigma. Dentre os quais, conforme grau de relevância dos especialistas deste estudo, pode-se destacar: desperdícios, capacidade produtiva e estudo de tempos. Ressaltando ainda que o sistema proposto seja de grande importância para profissionais e pesquisadores da gestão da produção, os quais desejam resultados que reduzam custos e conseqüentemente aumente os lucros da organização.