970 resultados para Single Graphics Processing Units


Relevância:

100.00% 100.00%

Publicador:

Resumo:

La evolución de los teléfonos móviles inteligentes, dotados de cámaras digitales, está provocando una creciente demanda de aplicaciones cada vez más complejas que necesitan algoritmos de visión artificial en tiempo real; puesto que el tamaño de las señales de vídeo no hace sino aumentar y en cambio el rendimiento de los procesadores de un solo núcleo se ha estancado, los nuevos algoritmos que se diseñen para visión artificial han de ser paralelos para poder ejecutarse en múltiples procesadores y ser computacionalmente escalables. Una de las clases de procesadores más interesantes en la actualidad se encuentra en las tarjetas gráficas (GPU), que son dispositivos que ofrecen un alto grado de paralelismo, un excelente rendimiento numérico y una creciente versatilidad, lo que los hace interesantes para llevar a cabo computación científica. En esta tesis se exploran dos aplicaciones de visión artificial que revisten una gran complejidad computacional y no pueden ser ejecutadas en tiempo real empleando procesadores tradicionales. En cambio, como se demuestra en esta tesis, la paralelización de las distintas subtareas y su implementación sobre una GPU arrojan los resultados deseados de ejecución con tasas de refresco interactivas. Asimismo, se propone una técnica para la evaluación rápida de funciones de complejidad arbitraria especialmente indicada para su uso en una GPU. En primer lugar se estudia la aplicación de técnicas de síntesis de imágenes virtuales a partir de únicamente dos cámaras lejanas y no paralelas—en contraste con la configuración habitual en TV 3D de cámaras cercanas y paralelas—con información de color y profundidad. Empleando filtros de mediana modificados para la elaboración de un mapa de profundidad virtual y proyecciones inversas, se comprueba que estas técnicas son adecuadas para una libre elección del punto de vista. Además, se demuestra que la codificación de la información de profundidad con respecto a un sistema de referencia global es sumamente perjudicial y debería ser evitada. Por otro lado se propone un sistema de detección de objetos móviles basado en técnicas de estimación de densidad con funciones locales. Este tipo de técnicas es muy adecuada para el modelado de escenas complejas con fondos multimodales, pero ha recibido poco uso debido a su gran complejidad computacional. El sistema propuesto, implementado en tiempo real sobre una GPU, incluye propuestas para la estimación dinámica de los anchos de banda de las funciones locales, actualización selectiva del modelo de fondo, actualización de la posición de las muestras de referencia del modelo de primer plano empleando un filtro de partículas multirregión y selección automática de regiones de interés para reducir el coste computacional. Los resultados, evaluados sobre diversas bases de datos y comparados con otros algoritmos del estado del arte, demuestran la gran versatilidad y calidad de la propuesta. Finalmente se propone un método para la aproximación de funciones arbitrarias empleando funciones continuas lineales a tramos, especialmente indicada para su implementación en una GPU mediante el uso de las unidades de filtraje de texturas, normalmente no utilizadas para cómputo numérico. La propuesta incluye un riguroso análisis matemático del error cometido en la aproximación en función del número de muestras empleadas, así como un método para la obtención de una partición cuasióptima del dominio de la función para minimizar el error. ABSTRACT The evolution of smartphones, all equipped with digital cameras, is driving a growing demand for ever more complex applications that need to rely on real-time computer vision algorithms. However, video signals are only increasing in size, whereas the performance of single-core processors has somewhat stagnated in the past few years. Consequently, new computer vision algorithms will need to be parallel to run on multiple processors and be computationally scalable. One of the most promising classes of processors nowadays can be found in graphics processing units (GPU). These are devices offering a high parallelism degree, excellent numerical performance and increasing versatility, which makes them interesting to run scientific computations. In this thesis, we explore two computer vision applications with a high computational complexity that precludes them from running in real time on traditional uniprocessors. However, we show that by parallelizing subtasks and implementing them on a GPU, both applications attain their goals of running at interactive frame rates. In addition, we propose a technique for fast evaluation of arbitrarily complex functions, specially designed for GPU implementation. First, we explore the application of depth-image–based rendering techniques to the unusual configuration of two convergent, wide baseline cameras, in contrast to the usual configuration used in 3D TV, which are narrow baseline, parallel cameras. By using a backward mapping approach with a depth inpainting scheme based on median filters, we show that these techniques are adequate for free viewpoint video applications. In addition, we show that referring depth information to a global reference system is ill-advised and should be avoided. Then, we propose a background subtraction system based on kernel density estimation techniques. These techniques are very adequate for modelling complex scenes featuring multimodal backgrounds, but have not been so popular due to their huge computational and memory complexity. The proposed system, implemented in real time on a GPU, features novel proposals for dynamic kernel bandwidth estimation for the background model, selective update of the background model, update of the position of reference samples of the foreground model using a multi-region particle filter, and automatic selection of regions of interest to reduce computational cost. The results, evaluated on several databases and compared to other state-of-the-art algorithms, demonstrate the high quality and versatility of our proposal. Finally, we propose a general method for the approximation of arbitrarily complex functions using continuous piecewise linear functions, specially formulated for GPU implementation by leveraging their texture filtering units, normally unused for numerical computation. Our proposal features a rigorous mathematical analysis of the approximation error in function of the number of samples, as well as a method to obtain a suboptimal partition of the domain of the function to minimize approximation error.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ein System in einem metastabilen Zustand muss eine bestimmte Barriere in derrnfreien Energie überwinden um einen Tropfen der stabilen Phase zu formen.rnHerkömmliche Untersuchungen nehmen hierbei kugelförmige Tropfen an. Inrnanisotropen Systemen (wie z.B. Kristallen) ist diese Annahme aber nicht ange-rnbracht. Bei tiefen Temperaturen wirkt sich die Anisotropie des Systems starkrnauf die freie Energie ihrer Oberfläche aus. Diese Wirkung wird oberhalb derrnAufrauungstemperatur T R schwächer. Das Ising-Modell ist ein einfaches Mo-rndell, welches eine solche Anisotropie aufweist. Wir führen großangelegte Sim-rnulationen durch, um die Effekte, die mit einer endlichen Simulationsbox ein-rnhergehen, sowie statistische Ungenauigkeiten möglichst klein zu halten. DasrnAusmaß der Simulationen die benötigt werden um sinnvolle Ergebnisse zu pro-rnduzieren, erfordert die Entwicklung eines skalierbaren Simulationsprogrammsrnfür das Ising-Modell, welcher auf verschiedenen parallelen Architekturen (z.B.rnGrafikkarten) verwendet werden kann. Plattformunabhängigkeit wird durch ab-rnstrakte Schnittstellen erreicht, welche plattformspezifische Implementierungs-rndetails verstecken. Wir benutzen eine Systemgeometrie die es erlaubt eine Ober-rnfläche mit einem variablen Winkel zur Kristallebene zu untersuchen. Die Ober-rnfläche ist in Kontakt mit einer harten Wand, wobei der Kontaktwinkel Θ durchrnein Oberflächenfeld eingestellt werden kann. Wir leiten eine Differenzialglei-rnchung ab, welche das Verhalten der freien Energie der Oberfläche in einemrnanisotropen System beschreibt. Kombiniert mit thermodynamischer Integrationrnkann die Gleichung benutzt werden, um die anisotrope Oberflächenspannungrnüber einen großen Winkelbereich zu integrieren. Vergleiche mit früheren Mes-rnsungen in anderen Geometrien und anderen Methoden zeigen hohe Überein-rnstimung und Genauigkeit, welche vor allem durch die im Vergleich zu früherenrnMessungen wesentlich größeren Simulationsdomänen erreicht wird. Die Temper-rnaturabhängigkeit der Oberflächensteifheit κ wird oberhalb von T R durch diernKrümmung der freien Energie der Oberfläche für kleine Winkel gemessen. DiesernMessung lässt sich mit Simulationsergebnissen in der Literatur vergleichen undrnhat bessere Übereinstimmung mit theoretischen Voraussagen über das Skalen-rnverhalten von κ. Darüber hinaus entwickeln wir ein Tieftemperatur-Modell fürrndas Verhalten um Θ = 90 Grad weit unterhalb von T R. Der Winkel bleibt bis zu einemrnkritischen Feld H C quasi null; oberhalb des kritischen Feldes steigt der Winkelrnrapide an. H C wird mit der freien Energie einer Stufe in Verbindung gebracht,rnwas es ermöglicht, das kritische Verhalten dieser Größe zu analysieren. Die harternWand muss in die Analyse einbezogen werden. Durch den Vergleich freier En-rnergien bei geschickt gewählten Systemgrößen ist es möglich, den Beitrag derrnKontaktlinie zur freien Energie in Abhängigkeit von Θ zu messen. Diese Anal-rnyse wird bei verschiedenen Temperaturen durchgeführt. Im letzten Kapitel wirdrneine 2D Fluiddynamik Simulation für Grafikkarten parallelisiert, welche u. a.rnbenutzt werden kann um die Dynamik der Atmosphäre zu simulieren. Wir im-rnplementieren einen parallelen Evolution Galerkin Operator und erreichen

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an approach to create what we have called a Unified Sentiment Lexicon (USL). This approach aims at aligning, unifying, and expanding the set of sentiment lexicons which are available on the web in order to increase their robustness of coverage. One problem related to the task of the automatic unification of different scores of sentiment lexicons is that there are multiple lexical entries for which the classification of positive, negative, or neutral {P, Z, N} depends on the unit of measurement used in the annotation methodology of the source sentiment lexicon. Our USL approach computes the unified strength of polarity of each lexical entry based on the Pearson correlation coefficient which measures how correlated lexical entries are with a value between 1 and -1, where 1 indicates that the lexical entries are perfectly correlated, 0 indicates no correlation, and -1 means they are perfectly inversely correlated and so is the UnifiedMetrics procedure for CPU and GPU, respectively. Another problem is the high processing time required for computing all the lexical entries in the unification task. Thus, the USL approach computes a subset of lexical entries in each of the 1344 GPU cores and uses parallel processing in order to unify 155802 lexical entries. The results of the analysis conducted using the USL approach show that the USL has 95.430 lexical entries, out of which there are 35.201 considered to be positive, 22.029 negative, and 38.200 neutral. Finally, the runtime was 10 minutes for 95.430 lexical entries; this allows a reduction of the time computing for the UnifiedMetrics by 3 times.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent advances in the massively parallel computational abilities of graphical processing units (GPUs) have increased their use for general purpose computation, as companies look to take advantage of big data processing techniques. This has given rise to the potential for malicious software targeting GPUs, which is of interest to forensic investigators examining the operation of software. The ability to carry out reverse-engineering of software is of great importance within the security and forensics elds, particularly when investigating malicious software or carrying out forensic analysis following a successful security breach. Due to the complexity of the Nvidia CUDA (Compute Uni ed Device Architecture) framework, it is not clear how best to approach the reverse engineering of a piece of CUDA software. We carry out a review of the di erent binary output formats which may be encountered from the CUDA compiler, and their implications on reverse engineering. We then demonstrate the process of carrying out disassembly of an example CUDA application, to establish the various techniques available to forensic investigators carrying out black-box disassembly and reverse engineering of CUDA binaries. We show that the Nvidia compiler, using default settings, leaks useful information. Finally, we demonstrate techniques to better protect intellectual property in CUDA algorithm implementations from reverse engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Graphics Processing Units have become a booster for the microelectronics industry. However, due to intellectual property issues, there is a serious lack of information on implementation details of the hardware architecture that is behind GPUs. For instance, the way texture is handled and decompressed in a GPU to reduce bandwidth usage has never been dealt with in depth from a hardware point of view. This work addresses a comparative study on the hardware implementation of different texture decompression algorithms for both conventional (PCs and video game consoles) and mobile platforms. Circuit synthesis is performed targeting both a reconfigurable hardware platform and a 90nm standard cell library. Area-delay trade-offs have been extensively analyzed, which allows us to compare the complexity of decompressors and thus determine suitability of algorithms for systems with limited hardware resources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interactive ray tracing of non-trivial scenes is just becoming feasible on single graphics processing units (GPU). Recent work in this area focuses on building effective acceleration structures, which work well under the constraints of current GPUs. Most approaches are targeted at static scenes and only allow navigation in the virtual scene. So far support for dynamic scenes has not been considered for GPU implementations. We have developed a GPU-based ray tracing system for dynamic scenes consisting of a set of individual objects. Each object may independently move around, but its geometry and topology are static.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Fourier domain optical coherence tomography (FD-OCT), a large amount of interference data needs to be resampled from the wavelength domain to the wavenumber domain prior to Fourier transformation. We present an approach to optimize this data processing, using a graphics processing unit (GPU) and parallel processing algorithms. We demonstrate an increased processing and rendering rate over that previously reported by using GPU paged memory to render data in the GPU rather than copying back to the CPU. This avoids unnecessary and slow data transfer, enabling a processing and display rate of well over 524,000 A-scan/s for a single frame. To the best of our knowledge this is the fastest processing demonstrated to date and the first time that FD-OCT processing and rendering has been demonstrated entirely on a GPU.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The objective of this study is to investigate the feasibility of detecting and quantifying 3D cerebrovascular wall motion from a single 3D rotational x-ray angiography (3DRA) acquisition within a clinically acceptable time and computing from the estimated motion field for the further biomechanical modeling of the cerebrovascular wall. Methods: The whole motion cycle of the cerebral vasculature is modeled using a 4D B-spline transformation, which is estimated from a 4D to 2D + t image registration framework. The registration is performed by optimizing a single similarity metric between the entire 2D + t measured projection sequence and the corresponding forward projections of the deformed volume at their exact time instants. The joint use of two acceleration strategies, together with their implementation on graphics processing units, is also proposed so as to reach computation times close to clinical requirements. For further characterizing vessel wall properties, an approximation of the wall thickness changes is obtained through a strain calculation. Results: Evaluation on in silico and in vitro pulsating phantom aneurysms demonstrated an accurate estimation of wall motion curves. In general, the error was below 10% of the maximum pulsation, even in the situation when substantial inhomogeneous intensity pattern was present. Experiments on in vivo data provided realistic aneurysm and vessel wall motion estimates, whereas in regions where motion was neither visible nor anatomically possible, no motion was detected. The use of the acceleration strategies enabled completing the estimation process for one entire cycle in 5-10 min without degrading the overall performance. The strain map extracted from our motion estimation provided a realistic deformation measure of the vessel wall. Conclusions: The authors' technique has demonstrated that it can provide accurate and robust 4D estimates of cerebrovascular wall motion within a clinically acceptable time, although it has to be applied to a larger patient population prior to possible wide application to routine endovascular procedures. In particular, for the first time, this feasibility study has shown that in vivo cerebrovascular motion can be obtained intraprocedurally from a 3DRA acquisition. Results have also shown the potential of performing strain analysis using this imaging modality, thus making possible for the future modeling of biomechanical properties of the vascular wall.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study was undertaken to evaluate the effectiveness of a few physico-chemical and biological methods for the treatment of effluents from natural rubber processing units. The overall objective of this study is to evaluate the effectiveness of certain physico-chemical and biological methods for the treatment of effluents from natural rubber processing units. survey of the chemical characteristics of the effluents discharged from rubber processing units showed that the effluents from latex concentration units were the most polluting

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis explores the capabilities of heterogeneous multi-core systems, based on multiple Graphics Processing Units (GPUs) in a standard desktop framework. Multi-GPU accelerated desk side computers are an appealing alternative to other high performance computing (HPC) systems: being composed of commodity hardware components fabricated in large quantities, their price-performance ratio is unparalleled in the world of high performance computing. Essentially bringing “supercomputing to the masses”, this opens up new possibilities for application fields where investing in HPC resources had been considered unfeasible before. One of these is the field of bioelectrical imaging, a class of medical imaging technologies that occupy a low-cost niche next to million-dollar systems like functional Magnetic Resonance Imaging (fMRI). In the scope of this work, several computational challenges encountered in bioelectrical imaging are tackled with this new kind of computing resource, striving to help these methods approach their true potential. Specifically, the following main contributions were made: Firstly, a novel dual-GPU implementation of parallel triangular matrix inversion (TMI) is presented, addressing an crucial kernel in computation of multi-mesh head models of encephalographic (EEG) source localization. This includes not only a highly efficient implementation of the routine itself achieving excellent speedups versus an optimized CPU implementation, but also a novel GPU-friendly compressed storage scheme for triangular matrices. Secondly, a scalable multi-GPU solver for non-hermitian linear systems was implemented. It is integrated into a simulation environment for electrical impedance tomography (EIT) that requires frequent solution of complex systems with millions of unknowns, a task that this solution can perform within seconds. In terms of computational throughput, it outperforms not only an highly optimized multi-CPU reference, but related GPU-based work as well. Finally, a GPU-accelerated graphical EEG real-time source localization software was implemented. Thanks to acceleration, it can meet real-time requirements in unpreceeded anatomical detail running more complex localization algorithms. Additionally, a novel implementation to extract anatomical priors from static Magnetic Resonance (MR) scansions has been included.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This letter presents a new parallel method for hyperspectral unmixing composed by the efficient combination of two popular methods: vertex component analysis (VCA) and sparse unmixing by variable splitting and augmented Lagrangian (SUNSAL). First, VCA extracts the endmember signatures, and then, SUNSAL is used to estimate the abundance fractions. Both techniques are highly parallelizable, which significantly reduces the computing time. A design for the commodity graphics processing units of the two methods is presented and evaluated. Experimental results obtained for simulated and real hyperspectral data sets reveal speedups up to 100 times, which grants real-time response required by many remotely sensed hyperspectral applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Floating-point computing with more than one TFLOP of peak performance is already a reality in recent Field-Programmable Gate Arrays (FPGA). General-Purpose Graphics Processing Units (GPGPU) and recent many-core CPUs have also taken advantage of the recent technological innovations in integrated circuit (IC) design and had also dramatically improved their peak performances. In this paper, we compare the trends of these computing architectures for high-performance computing and survey these platforms in the execution of algorithms belonging to different scientific application domains. Trends in peak performance, power consumption and sustained performances, for particular applications, show that FPGAs are increasing the gap to GPUs and many-core CPUs moving them away from high-performance computing with intensive floating-point calculations. FPGAs become competitive for custom floating-point or fixed-point representations, for smaller input sizes of certain algorithms, for combinational logic problems and parallel map-reduce problems. © 2014 Technical University of Munich (TUM).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new parallel implementation of a previously hyperspectral coded aperture (HYCA) algorithm for compressive sensing on graphics processing units (GPUs). HYCA method combines the ideas of spectral unmixing and compressive sensing exploiting the high spatial correlation that can be observed in the data and the generally low number of endmembers needed in order to explain the data. The proposed implementation exploits the GPU architecture at low level, thus taking full advantage of the computational power of GPUs using shared memory and coalesced accesses to memory. The proposed algorithm is evaluated not only in terms of reconstruction error but also in terms of computational performance using two different GPU architectures by NVIDIA: GeForce GTX 590 and GeForce GTX TITAN. Experimental results using real data reveals signficant speedups up with regards to serial implementation.