973 resultados para Silicon oxide substrates
Resumo:
Among the range of materials used in bioengineering, parylene-C has been used in combination with silicon oxide and in presence of the serum proteins, in cell patterning. However, the structural properties of adsorbed serum proteins on these substrates still remain elusive. In this study, we use an optical biosensing technique to decipher the properties of fibronectin (Fn) and serum albumin adsorbed on parylene-C and silicon oxide substrates. Our results show the formation of layers with distinct structural and adhesive properties. Thin, dense layers are formed on parylene-C, whereas thicker, more diffuse layers are formed on silicon oxide. These results suggest that Fn acquires a compact structure on parylene-C and a more extended structure on silicon oxide. Nonetheless, parylene-C and silicon oxide substrates coated with Fn host cell populations that exhibit focal adhesion complexes and good cell attachment. Albumin adopts a deformed structure on parylene-C and a globular structure on silicon oxide, and does not support significant cell attachment on either surface. Interestingly, the co-incubation of Fn and albumin at the ratio found in serum, results in the preferential adsorption of albumin on parylene-C and Fn on silicon oxide. This finding is supported by the exclusive formation of focal adhesion complexes in differentiated mouse embryonic stem cells (CGR8), cultured on Fn/albumin coated silicon oxide, but not on parylene-C. The detailed information provided in this study on the distinct properties of layers of serum proteins on substrates such as parylene-C and silicon oxide is highly significant in developing methods for cell patterning.
Resumo:
The effects of sintering on several properties of FTO and ITO substates used in DSC have been investigated. FTO & ITO substrates were prepared with a range of sizes and aspect ratios - emulated laboratory style test cells through to prototype modules. Time and temperature of the sintering profiles were varied and sheet resistance and flatness measured. Electrical properties of the substrates were then further characterized by electrochemical impedance spectroscopy, and module sized devices were assembled and thickness variations over the device area were determined and related to performance.
Resumo:
Silicon oxide films were deposited by reactive evaporation of SiO. Parameters such as oxygen partial pressure and substrate temperature were varied to get variable and graded index films. Films with a refractive index in the range 1.718 to 1.465 at 550 nm have been successfully deposited. Films deposited using ionized oxygen has the refractive index 1.465 at 550 nm and good UV transmittance like bulk fused quartz. Preparation of graded index films was also investigated by changing the oxygen partial pressure during deposition. A two layer antireflection coating at 1064nm has been designed using both homogeneous and inhomogeneous films and studied their characteristics.
Resumo:
In this communication, we describe a new method which has enabled the first patterning of human neurons (derived from the human teratocarcinoma cell line (hNT)) on parylene-C/silicon dioxide substrates. We reveal the details of the nanofabrication processes, cell differentiation and culturing protocols necessary to successfully pattern hNT neurons which are each key aspects of this new method. The benefits in patterning human neurons on silicon chip using an accessible cell line and robust patterning technology are of widespread value. Thus, using a combined technology such as this will facilitate the detailed study of the pathological human brain at both the single cell and network level. © 2010 Elsevier B.V.
Resumo:
We report here the patterning of primary rat neurons and astrocytes from the postnatal hippocampus on ultra-thin parylene-C deposited on a silicon dioxide substrate, following observations of neuronal, astrocytic and nuclear coverage on strips of different lengths, widths and thicknesses. Neuronal and glial growth was characterized 'on', 'adjacent to' and 'away from' the parylene strips. In addition, the article reports how the same material combination can be used to isolate single cells along thin tracks of parylene-C. This is demonstrated with a series of high magnification images of the experimental observations for varying parylene strip widths and thicknesses. Thus, the findings demonstrate the possibility to culture cells on ultra-thin layers of parylene-C and localize single cells on thin strips. Such work is of interest and significance to the Neuroengineering and Multi-Electrode Array (MEA) communities, as it provides an alternative insulating material in the fabrication of embedded micro-electrodes, which can be used to facilitate single cell stimulation and recording in capacitive coupling mode. © 2010 Elsevier Ltd.
Resumo:
It is estimated that the adult human brain contains 100 billion neurons with 5-10 times as many astrocytes. Although it has been generally considered that the astrocyte is a simple supportive cell to the neuron, recent research has revealed new functionality of the astrocyte in the form of information transfer to neurons of the brain. In our previous work we developed a protocol to pattern the hNT neuron (derived from the human teratocarcinoma cell line (hNT)) on parylene-C/SiO(2) substrates. In this work, we report how we have managed to pattern hNT astrocytes, on parylene-C/SiO(2) substrates to single cell resolution. This article disseminates the nanofabrication and cell culturing steps necessary for the patterning of such cells. In addition, it reports the necessary strip lengths and strip width dimensions of parylene-C that encourage high degrees of cellular coverage and single cell isolation for this cell type. The significance in patterning the hNT astrocyte on silicon chip is that it will help enable single cell and network studies into the undiscovered functionality of this interesting cell, thus, contributing to closer pathological studies of the human brain.
Resumo:
The bulge test is successfully extended to the determination of the fracture properties of silicon nitride and oxide thin films. This is achieved by using long diaphragms made of silicon nitride single layers and oxide/nitride bilayers, and applying comprehensive mechanical model that describes the mechanical response of the diaphragms under uniform differential pressure. The model is valid for thin films with arbitrary z-dependent plane-strain modulus and prestress, where z denotes the coordinate perpendicular to the diaphragm. It takes into account the bending rigidity and stretching stiffness of the layered materials and the compliance of the supporting edges. This enables the accurate computation of the load-deflection response and stress distribution throughout the composite diaphragm as a function of the load, in particular at the critical pressure leading to the fracture of the diaphragms. The method is applied to diaphragms made of single layers of 300-nm-thick silicon nitride deposited by low-pressure chemical vapor deposition and composite diaphragms of silicon nitride grown on top of thermal silicon oxide films produced by wet thermal oxidation at 950 degrees C and 1050 degrees C with target thicknesses of 500, 750, and 1000 mn. All films characterized have an amorphous structure. Plane-strain moduli E-ps and prestress levels sigma(0) of 304.8 +/- 12.2 GPa and 1132.3 +/- 34.4 MPa, respectively, are extracted for Si3N4, whereas E-ps = 49.1 +/- 7.4 GPa and sigma(0) = -258.6 +/- 23.1 MPa are obtained for SiO2 films. The fracture data are analyzed using the standardized form of the Weibull distribution. The Si3N4 films present relatively high values of maximum stress at fracture and Weibull moduli, i.e., sigma(max) = 7.89 +/- 0.23 GPa and m = 50.0 +/- 3.6, respectively, when compared to the thermal oxides (sigma(max) = 0.89 +/- 0.07 GPa and m = 12.1 +/- 0.5 for 507-nm-thick 950 degrees C layers). A marginal decrease of sigma(max) with thickness is observed for SiO2, with no significant differences between the films grown at 950 degrees C and 1050 degrees C. Weibull moduli of oxide thin films are found to lie between 4.5 +/- 1.2 and 19.8 +/- 4.2, depending on the oxidation temperature and film thickness.
Resumo:
This paper compares the properties of silicon oxide and nitride as host matrices for Er ions. Erbium-doped silicon nitride films were deposited by a plasma-enhanced chemical-vapour deposition system. After deposition, the films were implanted with Er3+ at different doses. Er-doped thermal grown silicon oxide films were prepared at the same time as references. Photoluminescence features of Er3+ were inspected systematically. It is found that silicon nitride films are suitable for high concentration doping and the thermal quenching effect is not severe. However, a very high annealing temperature up to 1200 degrees C is needed to optically activate Er3+ which may be the main obstacle to impede the application of Er-doped silicon nitride.
Resumo:
Si-rich silicon oxide films were deposited by RF magnetron sputtering onto composite Si/SiO2 targets. After annealed at different temperature, the silicon oxide films embedded with silicon nanocrystals were obtained. The photoluminescenee(PL) from the silicon oxide films embedded with silicon nanocrystals was observed at room temperature. The strong peak is at 360 nm, its position is independent of the annealing temperature. The origin of the 360-nm PL in the silicon oxide films embedded with silicon nanoerystals was discussed.
Resumo:
Structural dependence on annealing of a-SiOx:H was studied by using infrared absorption and Raman scattering. The appearance of Raman peaks in the range of 513-519cm(-1) after 1170 degreesC annealing was interpreted as the formation nanocrystalline silicon with the sizes from 3-10nm. The Raman spectra also show the existence of amorphous-like silicon phase, which is associated with Si-Si bond re-construction at boundaries of silicon nanocrystallites. The presence of the shoulder at 980cm(-1) of Si-O-Si stretching vibration at 1085cm(-1) in infrared spectra imply that except that SiO2 phase, there is silicon sub-oxide phase in the films annealed at 1170 degreesC. This sub-oxide phase is located at the interface between Si crystallites and SiO2, and thus support the shell model for the mixed structures of Si grains and SiO2 matrix.
Resumo:
It is estimated that the adult human brain contains 100 billion neurons with 5–10 times as many astrocytes. Although it has been generally considered that the astrocyte is a simple supportive cell to the neuron, recent research has revealed new functionality of the astrocyte in the form of information transfer to neurons of the brain. In our previous work we developed a protocol to pattern the hNT neuron (derived from the human teratocarcinoma cell line (hNT)) on parylene-C/SiO2 substrates. In this work, we report how we have managed to pattern hNT astrocytes, on parylene-C/SiO2 substrates to single cell resolution. This article disseminates the nanofabrication and cell culturing steps necessary for the patterning of such cells. In addition, it reports the necessary strip lengths and strip width dimensions of parylene-C that encourage high degrees of cellular coverage and single cell isolation for this cell type. The significance in patterning the hNT astrocyte on silicon chip is that it will help enable single cell and network studies into the undiscovered functionality of this interesting cell, thus, contributing to closer pathological studies of the human brain.