981 resultados para Selective solar absorber


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The selective solar absorber surface is a fundamental part of a solar thermal collector, as it is responsible for the solar radiation absorption and for reduction of radiation heat losses. The surface’s optical properties, the solar absorption (á) and the emittance (å), have great impact on the solar thermal collector efficiency. In this work, two coatings types were studied: coatings obtained by physical vapor deposition (PVDs) and coatings obtained by projection with different paints (PCs) on aluminum substrates. The most common industrial high performing solar selective absorbers are nowadays produced by vacuum deposition methods, showing some disadvantages, such as lower durability, lower resistance to corrosion, adhesion and scratch, higher cost and complex production techniques. Currently, spectrally selective paints are a potential alternative for absorbing surfaces in low temperature applications, with attractive features such as ease of processing, durability and commercial availability with low cost. Solar absorber surfaces were submitted to accelerated ageing tests, specified in ISO 22975-3. This standard is applicable to the evaluation of the long term behavior and service life of selective solar absorbers for solar collectors working under typical domestic hot water system conditions. The studied coatings have, in the case of PVDs solar absorptions between 0.93 and 0.96 and emittance between 0.07 and 0.10, and in the case of PCs, solar absorptions between 0.91 and 0.93 and emittance between 0.40 and 0.60. In addition to evaluating long term behavior based on artificial ageing tests, it is also important to know the degradation mechanism of different coatings that are currently in the market. Electrochemical impedance spectroscopy (EIS) allows for the assessment of mechanistic information concerning the degradation processes, providing quantitative data as output, which can easily relate to the kinetic parameters of the system. EIS measures were carried out on Gamry FAS2 Femostat coupled with a PCL4 Controller. Two electrolytes were used, 0.5 M NaCl and 0.5 M Na2SO4, and the surfaces were tested at different immersion times up to 4 weeks. The following types of specimens have been tested: Aluminium with/without surface treatment, 3 selective paint coatings (one with a poly(urethane) binder and two with silicone binders) and 2 PVD coatings. Based on the behaviour of the specimens throughout the 4 weeks of immersion, it is possible to conclude that the coating showing the best protective properties corresponds to the selective paint coating with a polyurethane resin followed by the other paint coatings, whereas both the PVD coatings do not confer any protection to the substrate, having a deleterious effect as compared to the untreated aluminium reference.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study presents the design of a thin electromagnetic absorber which exhibits radar backscatter suppression that is independent of the wave polarisation at large incidence angles. The structure consists of a metal backed printed frequency selective surface (FSS), with resistors placed across narrow gaps inserted in the middle of each of the four sides of the conductor loops. The geometry of the periodic array and the value of the vertical and horizontal resistor pairs are carefully chosen to present a real impedance of 377 Ω at the centre operating frequency for both TE and TM polarised waves. Angular sensitivity and reflectivity bandwidth have been investigated for FSS absorber designs with thicknesses of 1, 2 and 3 mm. Each of the three structures was optimised to work at a centre frequency of 10 GHz and an incident angle of 45°. The design methodology is verified by measuring the radar backscatter suppression from a 3 mm (l / 10) thick screen in the frequency range 8–12 GHz. The absorber construction was simplified by filling the four metal gaps in each unit cell with shielding paint, and selecting the ink thickness to give the two required surface resistance values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tunable optical properties of the bulk structure of carbon nanotubes (CNT) were recently revealed as a perfect black body material, optically reflective mirror and solar absorber. The present study demonstrates an enhanced optical reflectance of up to similar to 15% over a broad wavelength range in the near infrared region followed by a mechanical modification of the surface of a bulk CNT structure, which can be accounted for due to the grating-like surface abnormalities. In response to the specific arrangement of the so-formed bent tips of the CNT, a selective reflectance is achieved and results in reflecting only a dominant component of the polarized ight, which has not been realized so far. Modulation of this selective-optical reflectance can be achieved by ontrolling the degree of tip bending of the nanotubes, thus opening up avenues for the construction of novel dynamic light polarizers and absorbers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundamental studies of magnetic alignment of highly anisotropic mesostructures can enable the clean-room-free fabrication of flexible, array-based solar and electronic devices, in which preferential orientation of nano- or microwire-type objects is desired. In this study, ensembles of 100 micron long Si microwires with ferromagnetic Ni and Co coatings are oriented vertically in the presence of magnetic fields. The degree of vertical alignment and threshold field strength depend on geometric factors, such as microwire length and ferromagnetic coating thickness, as well as interfacial interactions, which are modulated by varying solvent and substrate surface chemistry. Microwire ensembles with vertical alignment over 97% within 10 degrees of normal, as measured by X-ray diffraction, are achieved over square cm scale areas and set into flexible polymer films. A force balance model has been developed as a predictive tool for magnetic alignment, incorporating magnetic torque and empirically derived surface adhesion parameters. As supported by these calculations, microwires are shown to detach from the surface and align vertically in the presence of magnetic fields on the order of 100 gauss. Microwires aligned in this manner are set into a polydimethylsiloxane film where they retain their vertical alignment after the field has been removed and can subsequently be used as a flexible solar absorber layer. Finally, these microwires arrays can be protected for use in electrochemical cells by the conformal deposition of a graphene layer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The prospect of terawatt-scale electricity generation using a photovoltaic (PV) device places strict requirements on the active semiconductor optoelectronic properties and elemental abundance. After reviewing the constraints placed on an "earth-abundant" solar absorber, we find zinc phosphide (α-Zn3P2) to be an ideal candidate. In addition to its near-optimal direct band gap of 1.5 eV, high visible-light absorption coefficient (>104 cm-1), and long minority-carrier diffusion length (>5 μm), Zn3P2 is composed of abundant Zn and P elements and has excellent physical properties for scalable thin-film deposition. However, to date, a Zn3P2 device of sufficient efficiency for commercial applications has not been demonstrated. Record efficiencies of 6.0% for multicrystalline and 4.3% for thin-film cells have been reported, respectively. Performance has been limited by the intrinsic p-type conductivity of Zn3P2 which restricts us to Schottky and heterojunction device designs. Due to our poor understanding of Zn3P2 interfaces, an ideal heterojunction partner has not yet been found.

The goal of this thesis is to explore the upper limit of solar conversion efficiency achievable with a Zn3P2 absorber through the design of an optimal heterojunction PV device. To do so, we investigate three key aspects of material growth, interface energetics, and device design. First, the growth of Zn3P2 on GaAs(001) is studied using compound-source molecular-beam epitaxy (MBE). We successfully demonstrate the pseudomorphic growth of Zn3P2 epilayers of controlled orientation and optoelectronic properties. Next, the energy-band alignments of epitaxial Zn3P2 and II-VI and III-V semiconductor interfaces are measured via high-resolution x-ray photoelectron spectroscopy in order to determine the most appropriate heterojunction partner. From this work, we identify ZnSe as a nearly ideal n-type emitter for a Zn3P2 PV device. Finally, various II-VI/Zn3P2 heterojunction solar cells designs are fabricated, including substrate and superstrate architectures, and evaluated based on their solar conversion efficiency.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The need for sustainable energy production motivates the study of photovoltaic materials, which convert energy from sunlight directly into electricity. This work has focused on the development of Cu2O as an earth-abundant solar absorber due to the abundance of its constituent elements in the earth's crust, its suitable band gap, and its potential for low cost processing. Crystalline wafers of Cu2O with minority carrier diffusion lengths on the order of microns can be manufactured in a uniquely simple fashion — directly from copper foils by thermal oxidation. Furthermore, Cu2O has an optical band gap of 1.9 eV, which gives it a detailed balance energy conversion efficiency of 24.7% and the possibility for an independently connected Si/Cu2O dual junction with a detailed balance efficiency of 44.3%.

However, the highest energy conversion efficiency achieved in a photovoltaic device with a Cu2O absorber layer is currently only 5.38% despite the favorable optical and electronic properties listed above. There are several challenges to making a Cu2O photovoltaic device, including an inability to dope the material, its relatively low chemical stability compared to other oxides, and a lack of suitable heterojunction partners due to an unusually small electron affinity. We have addressed the low chemical stability, namely the fact that Cu2O is an especially reactive oxide due to its low enthalpy of formation (ΔHf0 = -168.7 kJ/mol), by developing a novel surface preparation technique. We have addressed the lack of suitable heterojunction partners by investigating the heterojunction band alignment of several Zn-VI materials with Cu2O. Finally, We have addressed the typically high series resistance of Cu2O wafers by developing methods to make very thin, bulk Cu2O, including devices on Cu2O wafers as thin as 20 microns. Using these methods we have been able to achieve photovoltages over 1 V, and have demonstrated the potential of a new heterojunction material, Zn(O,S).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Se calculó la obtención de las constantes ópticas usando el método de Wolfe. Dichas contantes: coeficiente de absorción (α), índice de refracción (n) y espesor de una película delgada (d ), son de importancia en el proceso de caracterización óptica del material. Se realizó una comparación del método del Wolfe con el método empleado por R. Swanepoel. Se desarrolló un modelo de programación no lineal con restricciones, de manera que fue posible estimar las constantes ópticas de películas delgadas semiconductoras, a partir únicamente, de datos de transmisión conocidos. Se presentó una solución al modelo de programación no lineal para programación cuadrática. Se demostró la confiabilidad del método propuesto, obteniendo valores de α = 10378.34 cm−1, n = 2.4595, d =989.71 nm y Eg = 1.39 Ev, a través de experimentos numéricos con datos de medidas de transmitancia espectral en películas delgadas de Cu3BiS3.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Se presentan las propiedades eléctricas del compuesto Cu3BiS3 depositado por co-evaporación. Este es un nuevo compuesto que puede tener propiedades adecuadas para ser utilizado como capa absorbente en celdas solares. Las muestras fueron caracterizadas a través de medidas de efecto Hall y fotovoltaje superficial transiente (SPV). A través de medidas de efecto Hall se encontró que la concentración de portadores de carga n es del orden de 1016 cm-3 independiente de la relación de masas de Cu/Bi. También se encontró que la movilidad de este compuesto (μ del orden de 4 cm2V -1s-1) varía de acuerdo con los mecanismos de transporte que la gobiernan en dependencia con la temperatura. A partir de las medidas de SPV se encontró alta densidad de defectos superficiales, defectos que son pasivados al superponer una capa buffer sobre el compuesto Cu3BiS3.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cu2ZnSnS4 (CZTS) is considered to be one of the most promising light absorbing materials for low cost, high efficiency thin film solar cells. Compared to conventional CuIn(S, Se)2 (CIS) and Cu(InGa)(S,Se)2 (CIGS) as well as CdTe light absorber, CZTS is only composed of earth-abundant non-toxic elements, ensuring the price competitiveness of this kind of solar cell in the future PV market. However, the research in this area is very limited compared to CIS and CIGS. Detailed studies of both the material and the device are rare, which significantly restricts the development in this area. This paper reviews the progress in the research field of CZTS, particularly the methods which were employed to prepare CZTS absorber material.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

CZTS (Copper Zinc Tin Sulphide) is a wide band gap quartnery chalcopyrite which has a band gap of about 1.45 eV and an absorption coefficient of 10(4) cm(-1); thus making it an ideal material to be used as an absorber layer in solar cells. Ultrasonic Spray Pyrolysis is a deposition technique, where the solution is atomized ultrasonically, thereby giving a fine mist having a narrow size distribution which can be used for uniform coatings on substrates. An Ultrasonic Spray Pyrolysis equipment was developed and CZTS absorber layers were successfully grown with this technique on soda lime glass substrates using aqueous solutions. Substrate temperatures ranging from 523 K to 723 K were used to deposit the CZTS layers and these films were characterized using SEM, EDAX and XRD. It was observed that the film crystallized in the kesterite structure and the best crystallites were obtained at 613 K. It was observed that the grain size progressively increased with temperature. The optical band gap of the material was obtained as 1.54 eV.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Silver indium sulfide (AgInS2) thin films are deposited by sequential sputtering of metallic precursor Ag/In] followed by sulfurization. Effect of substrate temperature (Tsub) during sulfurization process on the film growth is studied by varying the substrate temperature from 350 to 500 degrees C. Films prepared above 350 degrees C showed a mixture of orthorhombic and tetragonal phases of AgInS2 with tetragonal phase being dominant. Better crystalline, nearly stoichiometric and p-type films are obtained at a substrate temperature of 500 degrees C. The characteristic A(1) mode of AgInS2 chalcopyrite structure is observed in the Raman spectra at 274 cm(-1) for the films prepared above 350 degrees C. The grain size of the film increases from 489 to 895 nm with the increase in substrate temperature. The binding energies of the constituent elements are determined using XPS. The band gap of AgInS2 films is in the range of 1.64-1.92 eV and the absorption coefficient is found to be >10(4) cm(-1). Preliminary studies on the AgInS2/ZnS solar cell showed an efficiency of 0.3%. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Over the last several decades there have been significant advances in the study and understanding of light behavior in nanoscale geometries. Entire fields such as those based on photonic crystals, plasmonics and metamaterials have been developed, accelerating the growth of knowledge related to nanoscale light manipulation. Coupled with recent interest in cheap, reliable renewable energy, a new field has blossomed, that of nanophotonic solar cells.

In this thesis, we examine important properties of thin-film solar cells from a nanophotonics perspective. We identify key differences between nanophotonic devices and traditional, thick solar cells. We propose a new way of understanding and describing limits to light trapping and show that certain nanophotonic solar cell designs can have light trapping limits above the so called ray-optic or ergodic limit. We propose that a necessary requisite to exceed the traditional light trapping limit is that the active region of the solar cell must possess a local density of optical states (LDOS) higher than that of the corresponding, bulk material. Additionally, we show that in addition to having an increased density of states, the absorber must have an appropriate incoupling mechanism to transfer light from free space into the optical modes of the device. We outline a portfolio of new solar cell designs that have potential to exceed the traditional light trapping limit and numerically validate our predictions for select cases.

We emphasize the importance of thinking about light trapping in terms of maximizing the optical modes of the device and efficiently coupling light into them from free space. To further explore these two concepts, we optimize patterns of superlattices of air holes in thin slabs of Si and show that by adding a roughened incoupling layer the total absorbed current can be increased synergistically. We suggest that the addition of a random scattering surface to a periodic patterning can increase incoupling by lifting the constraint of selective mode occupation associated with periodic systems.

Lastly, through experiment and simulation, we investigate a potential high efficiency solar cell architecture that can be improved with the nanophotonic light trapping concepts described in this thesis. Optically thin GaAs solar cells are prepared by the epitaxial liftoff process by removal from their growth substrate and addition of a metallic back reflector. A process of depositing large area nano patterns on the surface of the cells is developed using nano imprint lithography and implemented on the thin GaAs cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Concentrating solar power is an important way of providing renewable energy. Model simulation approaches play a fundamental role in the development of this technology and, for this, an accurately validation of the models is crucial. This work presents the validation of the heat loss model of the absorber tube of a parabolic trough plant by comparing the model heat loss estimates with real measurements in a specialized testing laboratory. The study focuses on the implementation in the model of a physical-meaningful and widely valid formulation of the absorber total emissivity depending on the surface’s temperature. For this purpose, the spectral emissivity of several absorber’s samples are measured and, with these data, the absorber total emissivity curve is obtained according to Planck function. This physical-meaningful formulation is used as input parameter in the heat loss model and a successful validation of the model is performed. Since measuring the spectral emissivity of the absorber surface may be complex and it is sample-destructive, a new methodology for the absorber’s emissivity characterization is proposed. This methodology provides an estimation of the absorber total emissivity, retaining its physical meaning and widely valid formulation according to Planck function with no need for direct spectral measurements. This proposed method is also successfully validated and the results are shown in the present paper.