944 resultados para Second Order Stress Moment
Resumo:
This study investigates the feasibility of predicting the momentamplification in beam-column elements of steel moment-resisting frames using the structure's natural period. Unlike previous methods, which perform moment-amplification on a story-by-story basis, this study develops and tests two models that aim to predict a global amplification factor indicative of the largest relevant instance of local moment amplification in the structure. To thisend, a variety of two-dimensional frames is investigated using first and secondorder finite element analysis. The observed moment amplification is then compared with the predicted amplification based on the structure's natural period, which is calculated by first-order finite element analysis. As a benchmark, design moment amplification factors are calculated for each story using the story stiffness approach, and serve to demonstrate the relativeconservatism and accuracy of the proposed models with respect to current practice in design. The study finds that the observed moment amplification factors may vastly exceed expectations when internal member stresses are initially very small. Where the internal stresses are small relative to the member capacities, thesecases are inconsequential for design. To qualify the significance of the observed amplification factors, two parameters are used: the second-order moment normalized to the plastic moment capacity, and the combined flexural and axial stress interaction equations developed by AISC
Resumo:
In moment structure analysis with nonnormal data, asymptotic valid inferences require the computation of a consistent (under general distributional assumptions) estimate of the matrix $\Gamma$ of asymptotic variances of sample second--order moments. Such a consistent estimate involves the fourth--order sample moments of the data. In practice, the use of fourth--order moments leads to computational burden and lack of robustness against small samples. In this paper we show that, under certain assumptions, correct asymptotic inferences can be attained when $\Gamma$ is replaced by a matrix $\Omega$ that involves only the second--order moments of the data. The present paper extends to the context of multi--sample analysis of second--order moment structures, results derived in the context of (simple--sample) covariance structure analysis (Satorra and Bentler, 1990). The results apply to a variety of estimation methods and general type of statistics. An example involving a test of equality of means under covariance restrictions illustrates theoretical aspects of the paper.
Resumo:
A class of semilinear evolution equations of the second order in time of the form u(tt)+Au+mu Au(t)+Au(tt) = f(u) is considered, where -A is the Dirichlet Laplacian, 92 is a smooth bounded domain in R(N) and f is an element of C(1) (R, R). A local well posedness result is proved in the Banach spaces W(0)(1,p)(Omega)xW(0)(1,P)(Omega) when f satisfies appropriate critical growth conditions. In the Hilbert setting, if f satisfies all additional dissipativeness condition, the nonlinear Semigroup of global solutions is shown to possess a gradient-like attractor. Existence and regularity of the global attractor are also investigated following the unified semigroup approach, bootstrapping and the interpolation-extrapolation techniques.
Resumo:
The asymptotic behavior of a class of coupled second-order nonlinear dynamical systems is studied in this paper. Using very mild assumptions on the vector-field, conditions on the coupling parameters that guarantee synchronization are provided. The proposed result does not require solutions to be ultimately bounded in order to prove synchronization, therefore it can be used to study coupled systems that do not globally synchronize, including synchronization of unbounded solutions. In this case, estimates of the synchronization region are obtained. Synchronization of two-coupled nonlinear pendulums and two-coupled Duffing systems are studied to illustrate the application of the proposed theory.
Resumo:
This paper reports the use of a non-destructive, continuous magnetic Barkhausen noise (CMBN) technique to investigate the size and thickness of volumetric defects, in a 1070 steel. The magnetic behavior of the used probe was analyzed by numerical simulation, using the finite element method (FEM). Results indicated that the presence of a ferrite coil core in the probe favors MBN emissions. The samples were scanned with different speeds and probe configurations to determine the effect of the flaw on the CMBN signal amplitude. A moving smooth window, based on a second-order statistical moment, was used for analyzing the time signal. The results show the technique`s good repeatability, and high capacity for detection of this type of defect. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
We give conditions on f involving pairs of lower and upper solutions which lead to the existence of at least three solutions of the two point boundary value problem y" + f(x, y, y') = 0, x epsilon [0, 1], y(0) = 0 = y(1). In the special case f(x, y, y') = f(y) greater than or equal to 0 we give growth conditions on f and apply our general result to show the existence of three positive solutions. We give an example showing this latter result is sharp. Our results extend those of Avery and of Lakshmikantham et al.
Resumo:
Subcycling algorithms which employ multiple timesteps have been previously proposed for explicit direct integration of first- and second-order systems of equations arising in finite element analysis, as well as for integration using explicit/implicit partitions of a model. The author has recently extended this work to implicit/implicit multi-timestep partitions of both first- and second-order systems. In this paper, improved algorithms for multi-timestep implicit integration are introduced, that overcome some weaknesses of those proposed previously. In particular, in the second-order case, improved stability is obtained. Some of the energy conservation properties of the Newmark family of algorithms are shown to be preserved in the new multi-timestep extensions of the Newmark method. In the first-order case, the generalized trapezoidal rule is extended to multiple timesteps, in a simple way that permits an implicit/implicit partition. Explicit special cases of the present algorithms exist. These are compared to algorithms proposed previously. (C) 1998 John Wiley & Sons, Ltd.
Resumo:
In this work we study the existence and regularity of mild solutions for a damped second order abstract functional differential equation with impulses. The results are obtained using the cosine function theory and fixed point criterions. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
We establish the existence of mild solutions for a class of impulsive second-order partial neutral functional differential equations with infinite delay in a Banach space. (C) 2009 Published by Elsevier Ltd
Resumo:
This work is concerned with implicit second order abstract differential equations with nonlocal conditions. Assuming that the involved operators satisfy sonic compactness properties, we establish the existence of local mild solutions, the existence of global mild solutions and the existence of asymptotically almost periodic solutions.
Resumo:
In this paper we study the approximate controllability of control systems with states and controls in Hilbert spaces, and described by a second-order semilinear abstract functional differential equation with infinite delay. Initially we establish a characterization for the approximate controllability of a second-order abstract linear system and, in the last section, we compare the approximate controllability of a semilinear abstract functional system with the approximate controllability of the associated linear system. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We establish existence of mild solutions for a class of abstract second-order partial neutral functional differential equations with unbounded delay in a Banach space.
Resumo:
We establish existence results for solutions to three-point boundary value problems for nonlinear, second-order, ordinary differential equations with nonlinear boundary conditions. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
We study difference equations which arise as discrete approximations to two-point boundary value problems for systems of second-order ordinary differential equations. We formulate conditions which guarantee a priori bounds on first differences of solutions to the discretized problem. We establish existence results for solutions to the discretized boundary value problems subject to nonlinear boundary conditions. We apply our results to show that solutions to the discrete problem converge to solutions of the continuous problem in an aggregate sense. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
We give conditions on f involving pairs of discrete lower and discrete upper solutions which lead to the existence of at least three solutions of the discrete two-point boundary value problem yk+1 - 2yk + yk-1 + f (k, yk, vk) = 0, for k = 1,..., n - 1, y0 = 0 = yn,, where f is continuous and vk = yk - yk-1, for k = 1,..., n. In the special case f (k, t, p) = f (t) greater than or equal to 0, we give growth conditions on f and apply our general result to show the existence of three positive solutions. We give an example showing this latter result is sharp. Our results extend those of Avery and Peterson and are in the spirit of our results for the continuous analogue. (C) 2002 Elsevier Science Ltd. All rights reserved.