Multi-sample analysis of moment-structures: Asymptotic validity of inferences based on second-order moments


Autoria(s): Satorra, Albert
Contribuinte(s)

Universitat Pompeu Fabra. Departament d'Economia i Empresa

Data(s)

11/07/2013

Resumo

In moment structure analysis with nonnormal data, asymptotic valid inferences require the computation of a consistent (under general distributional assumptions) estimate of the matrix $\Gamma$ of asymptotic variances of sample second--order moments. Such a consistent estimate involves the fourth--order sample moments of the data. In practice, the use of fourth--order moments leads to computational burden and lack of robustness against small samples. In this paper we show that, under certain assumptions, correct asymptotic inferences can be attained when $\Gamma$ is replaced by a matrix $\Omega$ that involves only the second--order moments of the data. The present paper extends to the context of multi--sample analysis of second--order moment structures, results derived in the context of (simple--sample) covariance structure analysis (Satorra and Bentler, 1990). The results apply to a variety of estimation methods and general type of statistics. An example involving a test of equality of means under covariance restrictions illustrates theoretical aspects of the paper.

Identificador

http://hdl.handle.net/10230/20848

Idioma(s)

eng

Direitos

L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons

info:eu-repo/semantics/openAccess

<a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a>

Palavras-Chave #Statistics, Econometrics and Quantitative Methods
Tipo

info:eu-repo/semantics/workingPaper