777 resultados para Science education|Curriculum development
Resumo:
This study examined how the themes of environmental sustainability are evident in the national, state and local standards that guide k–12 science curriculum. The study applied the principles of content analysis within the framework of an ecological paradigm. In education, an ecological paradigm focuses on students' use of a holistic lens to view and understand material. The intent of this study was to analyze the seventh grade science content standards at the national, state, and local textbook levels to determine how and the extent to which each of the five themes of environmental sustainability are presented in the language of each text. The themes are: (a) Climate Change Indicators, (b) Biodiversity, (c) Human Population Density, (d) Impact and Presence of Environmental Pollution, (e) Earth as a Closed System. The research study offers practical insight on using a method of content analysis to locate keywords of environmental sustainability in the three texts and determine if the context of each term relates to this ecological paradigm. Using a concordance program, the researcher identified the frequency and context of each vocabulary item associated with these themes. Nine chi squares were run to determine if there were differences in content between the national and state standards and the textbook. Within each level chi squares were also run to determine if there were differences between the appearance of content knowledge and skill words. Results indicate that there is a lack of agreement between levels that is significant p < .01. A discussion of these results in relation to curriculum development and standardized assessments followed. The study found that at the national and state levels, there is a lack of articulation of the goals of environmental sustainability or an ecological paradigm. With respect to the science textbook, a greater number of keywords were present; however, the context of many of these keywords did not align with the discourse of an ecological paradigm. Further, the environmental sustainability themes present in the textbook were limited to the last four chapters of the text. Additional research is recommended to determine whether this situation also exists in other settings.
Resumo:
Els dies 11 i 12 d'agost va tenir lloc a Copenhaguen, Dinamarca, el seminari de treball Library and Information Science Education in Europe: ¿Issues in joint curriculum development and Bologna perspectives¿. Aquest seminari, que va estar coordinat per la Royal School of Library and Information Science de Dinamarca, amb la col·laboració de l'European Association for Library and Information Education and Research (EUCLID), es va organitzar en el marc d'un projecte europeu subvencionat pel programa Sòcrates. La Facultat de Biblioteconomia i Documentació de la Universitat de Barcelona, present entre 2001 i 2005 en la Junta de Govern de l'EUCLID, va participar-hi com a soci del projecte. L'objectiu del seminari era aplegar una cinquantena d'experts europeus de l'àrea de Biblioteconomia i Documentació ¿tots ells professors d'escoles i de facultats d'universitats europees¿ per discutir qüestions relacionades amb els plans d'estudis dels ensenyaments des de la perspectiva del procés de Bolonya. El seminari consistí en dues conferències i en les reunions de treball de dotze grups formats per experts que examinaren dotze grans temes ¿prèviament acordats pels organitzadors de l'esdeveniment¿ relacionats amb els plans d'estudis d'aquells ensenyaments.
Resumo:
Over the last 50 years a new research area, science education research, has arisen and undergone singular development worldwide. In the specific case of Brazil, research in science education first appeared systematically 40 years ago, as a consequence of an overall renovation in the field of science education. This evolution was also related to the political events taking place in the country. We will use the theoretical work of Rene Kaes on the development of groups and institutions as a basis for our discussion of the most important aspects that have helped the area of science education research develop into an institution and kept it operating as such. The growth of this area of research can be divided into three phases: The first was related to its beginning and early configurations; the second consisted of a process of consolidation of this institution; and the third consists of more recent developments, characterised by a multiplicity of research lines and corresponding challenges to be faced. In particular, we will analyse the special contributions to this study gleaned from the field known as the history and philosophy of science.
Resumo:
A methodology and framework for discipline-specific curriculum development in a local context is described. These activities, as part of the Thailand-Australia Science and Engineering Assistance Project, were in response to a needs analysis for curriculum assistance to a number of publicly-funded Thai universities in the engineering priority area of Materials Processing and Manufacturing. The paper outlines a strategy for the delivery of a centralised curriculum development workshop for academic staff follow-up visits and local curriculum activities with participating universities, and the presentation of technical short courses as guidance for such activity in other settings and/or discipline areas. This paper is part of a process of documentation so that others can apply the developed methodology and framework for curriculum development. While the paper is a report on curriculum activities in a particular setting, it is written in a manner that allows application of the methodology to other settings. The reader is advised that each curriculum activity needs to adopt a methodology and strategy to fit the particular circumstances being considered To assist in applying this approach elsewhere, a description of the various steps in the curriculum process, and typical responses to some of the more global issues, have been presented. Full details are available in the various TASEAP reports prepared by the authors. Specific detail has been omitted where this detail does not provide any information for generalized consumption.
Resumo:
Submitted in accordance with the requirements for the degree of Doctor of Philosophy (Doutoramento em co-tutela)The University of Leeds School of Education
Resumo:
Incluye índice temático. Resumen basado en el de la publicación
Resumo:
Resumen basado en el de la publicación. Monográfico con el título: 'Alumnos de altas capacidades : reflexiones sobre educación'
Resumo:
Over the last 50 years a new research area, science education research, has arisen and undergone singular development worldwide. In the specific case of Brazil, research in science education first appeared systematically 40 years ago, as a consequence of an overall renovation in the field of science education. This evolution was also related to the political events taking place in the country. We will use the theoretical work of Rene Kaes on the development of groups and institutions as a basis for our discussion of the most important aspects that have helped the area of science education research develop into an institution and kept it operating as such. The growth of this area of research can be divided into three phases: The first was related to its beginning and early configurations; the second consisted of a process of consolidation of this institution; and the third consists of more recent developments, characterised by a multiplicity of research lines and corresponding challenges to be faced. In particular, we will analyse the special contributions to this study gleaned from the field known as the history and philosophy of science.
Resumo:
An effective K-12 science education is essential to succeed in future phases of the curriculum and the e-Infrastructures for education provide new opportunities to enhance it. This paper presents ViSH Viewer, an innovative web tool to consume educational content which aims to facilitate e-Science infrastructures access through a next generation learning object called "Virtual Excursion". Virtual Excursions provide a new way to explore science in class by taking advantage of e-Infrastructure resources and their integration with other educational contents, resulting in the creation of a reusable, interoperable and granular learning object. In order to better understand how this tool can allow teachers and students a joyful exploration of e-Science, we also present three Virtual Excursion examples. Details about the design, development and the tool itself are explained in this paper as well as the concept, structure and metadata of the new learning object.
Resumo:
Nowadays, on a global level, the Higher Education System has a complex and broad horizon of curricular tools to use in the teaching and learning process. In addition to these new educational instruments, full of possibilities, we face specific socio-economic conditions that affect in a significantly way the Curriculum Development in certain knowledge areas (areas traditionally built on a methodology based on a physical presence of students in the classroom). Some areas such as Restoration, Rehabilitation or Construction Pathologies, and the construction sector in general, require very defined and particular knowledge that only a small number of experts claim as specialized training. All these aspects condition the teaching methodology performed in a physical classroom at a university campus (the only option used until recent years) and made us consider the integration of online teaching in these areas too. The present work shows the teaching methodology used for the development of two online courses, where we offer distance learning for "highly specialized" formation in the Edification area (an area where traditionally there was only classroom training). At the beginning, both courses were designed by classroom training, but got a really small number of applications due to the specialized topic proposed. Later, we proposed a "Curriculum Redesign" of the contents, offering an online modality, which implied a significant demand both within and outside the university area. A notable feature of this educational experience is the great spectrum opened for attendees of both courses in the online version. This situation improved significantly the "Curriculum Development" for the student and implied an interesting new proposal on the offered contents and materials (what would have been really difficult to get in a face to face classroom). In conclusion, the absence of certain types of specialized contents in the academic university curricula makes essential to raise new methodologies to save the gap in this area through additional training courses as those analyzed in this paper. Thus, our experience opens a debate on the appropriateness of implementing online training in relation to the face to face training in constructive content subjects and, especially, presents a new scheme, not without controversy, for the curriculum design.
Resumo:
"Series H."
Resumo:
Metacognition is the understanding and control of cognitive processes. Students with high levels of metacognition achieve greater academic success. The purpose of this mixed-methods study was to examine elementary teachers’ beliefs about metacognition and integration of metacognitive practices in science. Forty-four teachers were recruited through professional networks to complete a questionnaire containing open-ended questions (n = 44) and Likert-type items (n = 41). Five respondents were selected to complete semi-structured interviews informed by the questionnaire. The selected interview participants had a minimum of three years teaching experience and demonstrated a conceptual understanding of metacognition. Statistical tests (Pearson correlation, t-tests, and multiple regression) on quantitative data and thematic analysis of qualitative data indicated that teachers largely understood metacognition but had some gaps in their understanding. Participants’ reported actions (teaching practices) and beliefs differed according to their years of experience but not gender. Hierarchical multiple regression demonstrated that the first block of gender and experience was not a significant predictor of teachers' metacognitive actions, although experience was a significant predictor by itself. Experience was not a significant predictor once teachers' beliefs were added. The majority of participants indicated that metacognition was indeed appropriate for elementary students. Participants consistently reiterated that students’ metacognition developed with practice, but required explicit instruction. A lack of consensus remained around the domain specificity of metacognition. More specifically, the majority of questionnaire respondents indicated that metacognitive strategies could not be used across subject domains, whereas all interviewees indicated that they used strategies across subjects. Metacognition was integrated frequently into Ontario elementary classrooms; however, metacognition was integrated less frequently in science lessons. Lastly, participants used a variety of techniques to integrate metacognition into their classrooms. Implications for practice include the need for more professional development aimed at integrating metacognition into science lessons at both the Primary and Junior levels. Further, teachers could benefit from additional clarification on the three main components of metacognition and the need to integrate all three to successfully develop students’ metacognition.
Resumo:
The very nature of computer science with its constant changes forces those who wish to follow to adapt and react quickly. Large companies invest in being up to date in order to generate revenue and stay active on the market. Universities, on the other hand, need to imply same practices of staying up to date with industry needs in order to produce industry ready engineers. By interviewing former students, now engineers in the industry, and current university staff this thesis aims to learn if there is space for enhancing the education through different lecturing approaches and/or curriculum adaptation and development. In order to address these concerns a qualitative research has been conducted, focusing on data collection obtained through semi-structured live world interviews. The method used follows the seven stages of research interviewing introduced by Kvale and focuses on collecting and preparing relevant data for analysis. The collected data is transcribed, refined, and further on analyzed in the “Findings and analysis” chapter. The focus of analyzing was answering the three research questions; learning how higher education impacts a Computer Science and Informatics Engineers’ job, how to better undergo the transition from studies to working in the industry and how to develop a curriculum that helps support the previous two. Unaltered quoted extracts are presented and individually analyzed. To paint a better picture a theme-wise analysis is presented summing valuable themes that were repeated throughout the interviewing phase. The findings obtained imply that there are several factors directly influencing the quality of education. From the student side, it mostly concerns expectation and dedication involving studies, and from the university side it is commitment to the curriculum development process. Due to the time and resource limitations this research provides findings conducted on a narrowed scope, although it can serve as a great foundation for further development; possibly as a PhD research.
Resumo:
This article describes the process of adapting Social Education studies to the European Higher Education Area undertaken by a team of the teaching staff at the University of Girona (Spain). The aim of the experience is to build a curriculum based on thecompetencies recognized as such by professionals in the field of social education in our region. The article specifies the development of the various phases, each involving the active participation of professionals and teaching staff from the universities. To conclude, main characteristics of the curriculum are highlighted