951 resultados para Schrödinger equations
Resumo:
Using a mathematical approach accessible to graduate students of physics and engineering, we show how solitons are solutions of nonlinear Schrödinger equations. Are also given references about the history of solitons in general, their fundamental properties and how they have found applications in optics and fiber-optic communications.
Resumo:
2000 Mathematics Subject Classification: Primary 42A38. Secondary 42B10.
Resumo:
Pós-graduação em Física - FEG
Resumo:
Neste trabalho, estudamos propriedades de continuação única para as soluções da equação tipo Schrödinger com um ponto interação centrado em x=0, \\partial_tu=i(\\Delta_Z+V)u, onde V=V(x,t) é uma função de valor real e -\\Delta_Z é o operador escrito formalmente como \\[-\\Delta_Z=-\\frac\\frac{d^2}{dx^2}+Z\\delta_0,\\] sendo \\delta_0 a delta de Dirac centrada em zero e Z qualquer número real. Logo, usamos estes resultados para ver o possível fenômeno de concentração das soluções, que explodem, da equação de tipo Schrödinger não linear com um ponto de interação em x=0, \\[\\partial_tu=i(\\Delta_Zu+|u|^u),\\] com ho>5. Também, mostramos que para certas condições sobre o potencial dependente do tempo V, a equação linear em cima tem soluções não triviais.
Resumo:
The paper has been presented at the 12th International Conference on Applications of Computer Algebra, Varna, Bulgaria, June, 2006
Resumo:
Георги Венков, Христо Генев - Разглеждаме един клас от L^2 - критични нелинейни уравнения на Шрьодингер в R^(1+n) с конволюционна нелинейност от тип Хартри. Целта ни е да установим локалното и глобално съществуване на решенията, както и коректност на задачата на Коши в достатъчно малка околност на нулата в пространството L^2 (R^n). Като естествено следствие на глобалните резултати ние доказваме съществуване на оператор на разсейване за малки начални условия.
Resumo:
Neste trabalho é apresentado um simulador MATLAB para sistemas ópticos WDM amplificados baseado na solução das equações não lineares de Schrödinger acopladas, pelo método de Fourier de passo alternado. Este simulador permite o estudo da propagação de pulsos em fibras ópticas, considerando dispersão cromática, efeitos não lineares como automodulação de fase e modulação de fase cruzada e atenuação, prevendo também o emprego de amplificadores ópticos a fibra dopada com Érbio (EDFAs). Através de simulações numéricas, foi explorada a técnica de otimização do posicionamento de um EDFA ao longo de um enlace óptico, sem repetidores, que objetiva a redução dos custos de implantação de sistemas ópticos, seja pela diminuição da potência do transmissor ou pela relaxação da exigência de sensibilidade do receptor. Além disto, pode favorecer um aumento na capacidade do sistema, através do aumento do alcance ou da taxa de transmissão. A concordância dos resultados obtidos com os disponíveis na literatura confirmam a validade da técnica, bem como a versatilidade e robustez do simulador desenvolvido.
Resumo:
In this paper we compare different approaches to calculating the charge density in the 2DEG layer of AlGaN/GaN HEMTs. The methods used are (i) analytical theory implemented in MATLAB, (ii) finite-element analysis using semiconductor TCAD software that implements only the Poisson and continuity equations, and (iii) 1D software that solves the Poisson and Schrödinger equations self-consistently. By using the 1D Poisson-Schrödinger solver, we highlight the consequences of neglecting the Schrödinger equation. We conclude that the TCAD simulator predicts with a reasonable level of accuracy the electron density in the 2DEG layer for both a conventional HEMT structure and one featuring an extra GaN cap layer. In addition, while the sheet charge density is not significantly affected by including Schrödinger, its confinement in the channel is found to be modified. © 2012 IEEE.
Resumo:
Systematic trends in the properties of a linear split-gate heterojunction are studied by solving iteratively the Poisson and Schrödinger equations for different gate potentials and temperatures. A two-dimensional approximation is presented that is much simpler in the numerical implementation and that accurately reproduces all significant trends. In deriving this approximation, we provide a rigorous and quantitative basis for the formulation of models that assumes a two-dimensional character for the electron gas at the junction.
Resumo:
In this work, I consider the center-of-mass wave function for a homogenous sphere under the influence of the self-interaction due to Newtonian gravity. I solve for the ground state numerically and calculate the average radius as a measure of its size. For small masses, M≲10−17 kg, the radial size is independent of density, and the ground state extends beyond the extent of the sphere. For masses larger than this, the ground state is contained within the sphere and to a good approximation given by the solution for an effective radial harmonic-oscillator potential. This work thus determines the limits of applicability of the point-mass Newton Schrödinger equations for spherical masses. In addition, I calculate the fringe visibility for matter-wave interferometry and find that in the low-mass case, interferometry can in principle be performed, whereas for the latter case, it becomes impossible. Based on this, I discuss this transition as a possible boundary for the quantum-classical crossover, independent of the usually evoked environmental decoherence. The two regimes meet at sphere sizes R≈10−7 m, and the density of the material causes only minor variations in this value.
Resumo:
A general form for ladder operators is used to construct a method to solve bound-state Schrödinger equations. The characteristics of supersymmetry and shape invariance of the system are the start point of the approach. To show the elegance and the utility of the method we use it to obtain energy spectra and eigenfunctions for the one-dimensional harmonic oscillator and Morse potentials and for the radial harmonic oscillator and Coulomb potentials.
Resumo:
We analyze the stochastic creation of a single bound state (BS) in a random potential with a compact support. We study both the Hermitian Schrödinger equation and non-Hermitian Zakharov-Shabat systems. These problems are of special interest in the inverse scattering method for Korteveg–de-Vries and the nonlinear Schrödinger equations since soliton solutions of these two equations correspond to the BSs of the two aforementioned linear eigenvalue problems. Analytical expressions for the average width of the potential required for the creation of the first BS are given in the approximation of delta-correlated Gaussian potential and additionally different scenarios of eigenvalue creation are discussed for the non-Hermitian case.
Resumo:
In this work we propose a NLSE-based model of power and spectral properties of the random distributed feedback (DFB) fiber laser. The model is based on coupled set of non-linear Schrödinger equations for pump and Stokes waves with the distributed feedback due to Rayleigh scattering. The model considers random backscattering via its average strength, i.e. we assume that the feedback is incoherent. In addition, this allows us to speed up simulations sufficiently (up to several orders of magnitude). We found that the model of the incoherent feedback predicts the smooth and narrow (comparing with the gain spectral profile) generation spectrum in the random DFB fiber laser. The model allows one to optimize the random laser generation spectrum width varying the dispersion and nonlinearity values: we found, that the high dispersion and low nonlinearity results in narrower spectrum that could be interpreted as four-wave mixing between different spectral components in the quasi-mode-less spectrum of the random laser under study could play an important role in the spectrum formation. Note that the physical mechanism of the random DFB fiber laser formation and broadening is not identified yet. We investigate temporal and statistical properties of the random DFB fiber laser dynamics. Interestingly, we found that the intensity statistics is not Gaussian. The intensity auto-correlation function also reveals that correlations do exist. The possibility to optimize the system parameters to enhance the observed intrinsic spectral correlations to further potentially achieved pulsed (mode-locked) operation of the mode-less random distributed feedback fiber laser is discussed.
Resumo:
In this paper, we investigate the impact of inter-modal four-wave mixing on mode- and wavelength-division-multiplexing systems. A set of coupled nonlinear Schrödinger equations, including linear mode coupling, is derived allowing to isolate the inter-modal four-wave mixing terms. The efficiency of inter-modal four-wave mixing between degenerate LP modes is found to be significantly higher than the intra-modal four-wave mixing efficiency. However, it is shown that the inter-modal four-wave mixing efficiency between degenerate modes is significantly reduced by the linear mode coupling.
Resumo:
In Part I, a method for finding solutions of certain diffusive dispersive nonlinear evolution equations is introduced. The method consists of a straightforward iteration procedure, applied to the equation as it stands (in most cases), which can be carried out to all terms, followed by a summation of the resulting infinite series, sometimes directly and other times in terms of traces of inverses of operators in an appropriate space.
We first illustrate our method with Burgers' and Thomas' equations, and show how it quickly leads to the Cole-Hopft transformation, which is known to linearize these equations.
We also apply this method to the Korteweg and de Vries, nonlinear (cubic) Schrödinger, Sine-Gordon, modified KdV and Boussinesq equations. In all these cases the multisoliton solutions are easily obtained and new expressions for some of them follow. More generally we show that the Marcenko integral equations, together with the inverse problem that originates them, follow naturally from our expressions.
Only solutions that are small in some sense (i.e., they tend to zero as the independent variable goes to ∞) are covered by our methods. However, by the study of the effect of writing the initial iterate u_1 = u_(1)(x,t) as a sum u_1 = ^∼/u_1 + ^≈/u_1 when we know the solution which results if u_1 = ^∼/u_1, we are led to expressions that describe the interaction of two arbitrary solutions, only one of which is small. This should not be confused with Backlund transformations and is more in the direction of performing the inverse scattering over an arbitrary “base” solution. Thus we are able to write expressions for the interaction of a cnoidal wave with a multisoliton in the case of the KdV equation; these expressions are somewhat different from the ones obtained by Wahlquist (1976). Similarly, we find multi-dark-pulse solutions and solutions describing the interaction of envelope-solitons with a uniform wave train in the case of the Schrodinger equation.
Other equations tractable by our method are presented. These include the following equations: Self-induced transparency, reduced Maxwell-Bloch, and a two-dimensional nonlinear Schrodinger. Higher order and matrix-valued equations with nonscalar dispersion functions are also presented.
In Part II, the second Painleve transcendent is treated in conjunction with the similarity solutions of the Korteweg-de Vries equat ion and the modified Korteweg-de Vries equation.