Gravitational self-localization for spherical masses


Autoria(s): Jääskeläinen, Markku
Data(s)

2012

Resumo

In this work, I consider the center-of-mass wave function for a homogenous sphere under the influence of the self-interaction due to Newtonian gravity. I solve for the ground state numerically and calculate the average radius as a measure of its size. For small masses, M≲10−17 kg, the radial size is independent of density, and the ground state extends beyond the extent of the sphere. For masses larger than this, the ground state is contained within the sphere and to a good approximation given by the solution for an effective radial harmonic-oscillator potential. This work thus determines the limits of applicability of the point-mass Newton Schrödinger equations for spherical masses. In addition, I calculate the fringe visibility for matter-wave interferometry and find that in the low-mass case, interferometry can in principle be performed, whereas for the latter case, it becomes impossible. Based on this, I discuss this transition as a possible boundary for the quantum-classical crossover, independent of the usually evoked environmental decoherence. The two regimes meet at sphere sizes R≈10−7 m, and the density of the material causes only minor variations in this value.

Formato

application/pdf

Identificador

http://urn.kb.se/resolve?urn=urn:nbn:se:du-11222

doi:10.1103/PhysRevA.86.052105

ISI:000310847700002

Idioma(s)

eng

Publicador

Högskolan Dalarna, Fysik

American Physical Society

Relação

Physical Review A. Atomic, Molecular, and Optical Physics, 1050-2947, 2012, 86:5,

Direitos

info:eu-repo/semantics/openAccess

Tipo

Article in journal

info:eu-repo/semantics/article

text

Palavras-Chave #Atom and Molecular Physics and Optics #Atom- och molekylfysik och optik