987 resultados para SPIN-FOAM MODELS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we study two different spin-boson models. Such models are generalizations of the Dicke model, it means they describe systems of N identical two-level atoms coupled to a single-mode quantized bosonic field, assuming the rotating wave approximation. In the first model, we consider the wavelength of the bosonic field to be of the order of the linear dimension of the material composed of the atoms, therefore we consider the spatial sinusoidal form of the bosonic field. The second model is the Thompson model, where we consider the presence of phonons in the material composed of the atoms. We study finite temperature properties of the models using the path integral approach and functional methods. In the thermodynamic limit, N→∞, the systems exhibit phase transitions from normal to superradiant phase at some critical values of temperature and coupling constant. We find the asymptotic behavior of the partition functions and the collective spectrums of the systems in the normal and the superradiant phases. We observe that the collective spectrums have zero energy values in the superradiant phases, corresponding to the Goldstone mode associated to the continuous symmetry breaking of the models. Our analysis and results are valid in the limit of zero temperature β→∞, where the models exhibit quantum phase transitions. © 2013 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We give a theoretical treatment of the interaction of electronic excitations (excitions) in biomolecules and quantum dots with the surrounding polar solvent. Significant quantum decoherence occurs due to the interaction of the electric dipole moment of the solute with the fluctuating electric dipole moments of the individual molecules in the solvent. We introduce spin boson models which could be used to describe the effects. of decoherence on the quantum dynamics of biomolecules which undergo light-induced conformational change and on biomolecules or quantum dots which are coupled by Forster resonant energy transfer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As a laboratory for loop quantum gravity, we consider the canonical quantization of the three-dimensional Chern-Simons theory on a noncompact space with the topology of a cylinder. Working within the loop quantization formalism, we define at the quantum level the constraints appearing in the canonical approach and completely solve them, thus constructing a gauge and diffeomorphism invariant physical Hilbert space for the theory. This space turns out to be infinite dimensional, but separable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The different quantum phases appearing in strongly correlated systems as well as their transitions are closely related to the entanglement shared between their constituents. In 1D systems, it is well established that the entanglement spectrum is linked to the symmetries that protect the different quantum phases. This relation extends even further at the phase transitions where a direct link associates the entanglement spectrum to the conformal field theory describing the former. For 2D systems much less is known. The lattice geometry becomes a crucial aspect to consider when studying entanglement and phase transitions. Here, we analyze the entanglement properties of triangular spin lattice models by also considering concepts borrowed from quantum information theory such as geometric entanglement.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Die vorliegende Doktorarbeit befasst sich mit klassischen Vektor-Spingläsern eine Art von ungeordneten Magneten - auf verschiedenen Gittertypen. Da siernbedeutsam für eine experimentelle Realisierung sind, ist ein theoretisches Verständnis von Spinglas-Modellen mit wenigen Spinkomponenten und niedriger Gitterdimension von großer Bedeutung. Da sich dies jedoch als sehr schwierigrnerweist, sind neue, aussichtsreiche Ansätze nötig. Diese Arbeit betrachtet daher den Limesrnunendlich vieler Spindimensionen. Darin entstehen mehrere Vereinfachungen im Vergleichrnzu Modellen niedriger Spindimension, so dass für dieses bedeutsame Problem Eigenschaften sowohl bei Temperatur Null als auch bei endlichen Temperaturenrnüberwiegend mit numerischen Methoden ermittelt werden. Sowohl hyperkubische Gitter als auch ein vielseitiges 1d-Modell werden betrachtet. Letzteres erlaubt es, unterschiedliche Universalitätsklassen durch bloßes Abstimmen eines einzigen Parameters zu untersuchen. "Finite-size scaling''-Formen, kritische Exponenten, Quotienten kritischer Exponenten und andere kritische Größen werden nahegelegt und mit numerischen Ergebnissen verglichen. Eine detaillierte Beschreibung der Herleitungen aller numerisch ausgewerteter Gleichungen wird ebenso angegeben. Bei Temperatur Null wird eine gründliche Untersuchung der Grundzustände und Defektenergien gemacht. Eine Reihe interessanter Größen wird analysiert und insbesondere die untere kritische Dimension bestimmt. Bei endlicher Temperatur sind der Ordnungsparameter und die Spinglas-Suszeptibilität über die numerisch berechnete Korrelationsmatrix zugänglich. Das Spinglas-Modell im Limes unendlich vieler Spinkomponenten kann man als Ausgangspunkt zur Untersuchung der natürlicheren Modelle mit niedriger Spindimension betrachten. Wünschenswert wäre natürlich ein Modell, das die Vorteile des ersten mit den Eigenschaften des zweiten verbände. Daher wird in Modell mit Anisotropie vorgeschlagen und getestet, mit welchem versucht wird, dieses Ziel zu erreichen. Es wird auf reizvolle Wege hingewiesen, das Modell zu nutzen und eine tiefergehende Beschäftigung anzuregen. Zuletzt werden sogenannte "real-space" Renormierungsgruppenrechnungen sowohl analytisch als auch numerisch für endlich-dimensionale Vektor-Spingläser mit endlicher Anzahl von Spinkomponenten durchgeführt. Dies wird mit einer zuvor bestimmten neuen Migdal-Kadanoff Rekursionsrelation geschehen. Neben anderen Größen wird die untere kritische Dimension bestimmt.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work I reported recent results in the field of Statistical Mechanics of Equilibrium, and in particular in Spin Glass models and Monomer Dimer models . We start giving the mathematical background and the general formalism for Spin (Disordered) Models with some of their applications to physical and mathematical problems. Next we move on general aspects of the theory of spin glasses, in particular to the Sherrington-Kirkpatrick model which is of fundamental interest for the work. In Chapter 3, we introduce the Multi-species Sherrington-Kirkpatrick model (MSK), we prove the existence of the thermodynamical limit and the Guerra's Bound for the quenched pressure together with a detailed analysis of the annealed and the replica symmetric regime. The result is a multidimensional generalization of the Parisi's theory. Finally we brie y illustrate the strategy of the Panchenko's proof of the lower bound. In Chapter 4 we discuss the Aizenmann-Contucci and the Ghirlanda-Guerra identities for a wide class of Spin Glass models. As an example of application, we discuss the role of these identities in the proof of the lower bound. In Chapter 5 we introduce the basic mathematical formalism of Monomer Dimer models. We introduce a Gaussian representation of the partition function that will be fundamental in the rest of the work. In Chapter 6, we introduce an interacting Monomer-Dimer model. Its exact solution is derived and a detailed study of its analytical properties and related physical quantities is performed. In Chapter 7, we introduce a quenched randomness in the Monomer Dimer model and show that, under suitable conditions the pressure is a self averaging quantity. The main result is that, if we consider randomness only in the monomer activity, the model is exactly solvable.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The glass transition, whereby liquids transform into amorphous solids at low temperatures, is a subject of intense research despite decades of investigation. Explaining the enormous increase in relaxation times of a liquid upon supercooling is essential for understanding the glass transition. Although many theories, such as the Adam-Gibbs theory, have sought to relate growing relaxation times to length scales associated with spatial correlations in liquid structure or motion of molecules, the role of length scales in glassy dynamics is not well established. Recent studies of spatially correlated rearrangements of molecules leading to structural relaxation, termed ``spatially heterogeneous dynamics,'' provide fresh impetus in this direction. A powerful approach to extract length scales in critical phenomena is finite-size scaling, wherein a system is studied for sizes traversing the length scales of interest. We perform finite-size scaling for a realistic glass-former, using computer simulations, to evaluate the length scale associated with spatially heterogeneous dynamics, which grows as temperature decreases. However, relaxation times that also grow with decreasing temperature do not exhibit standard finite-size scaling with this length. We show that relaxation times are instead determined, for all studied system sizes and temperatures, by configurational entropy, in accordance with the Adam-Gibbs relation, but in disagreement with theoretical expectations based on spin-glass models that configurational entropy is not relevant at temperatures substantially above the critical temperature of mode-coupling theory. Our results provide new insights into the dynamics of glass-forming liquids and pose serious challenges to existing theoretical descriptions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider the effects of quantum fluctuations in mean-field quantum spin-glass models with pairwise interactions. We examine the nature of the quantum glass transition at zero temperature in a transverse field. In models (such as the random orthogonal model) where the classical phase transition is discontinuous an analysis using the static approximation reveals that the transition becomes continuous at zero temperature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We show that a broad class of quantum critical points can be stable against locally correlated disorder even if they are unstable against uncorrelated disorder. Although this result seemingly contradicts the Harris criterion, it follows naturally from the absence of a random-mass term in the associated order parameter field theory. We illustrate the general concept with explicit calculations for quantum spin-chain models. Instead of the infinite-randomness physics induced by uncorrelated disorder, we find that weak locally correlated disorder is irrelevant. For larger disorder, we find a line of critical points with unusual properties such as an increase of the entanglement entropy with the disorder strength. We also propose experimental realizations in the context of quantum magnetism and cold-atom physics. Copyright (C) EPLA, 2011

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ising and m-vector spin-glass models are studied, in the limit of infinite-range in-teractions, through the replica method. First, the m-vector spin glass, in the presence of an external uniform magnetic field, as well as of uniaxial anisotropy fields, is consi-dered. The effects of the anisotropics on the phase diagrams, and in particular, on the Gabay-Toulouse line, which signals the transverse spin-glass ordering, are investigated. The changes in the Gabay-Toulouse line, due to the presence of anisotropy fields which favor spin orientations along the Cartesian axes (m = 2: planar anisotropy; m = 3: cubic anisotropy), are also studied. The antiferromagnetic Ising spin glass, in the presence of uniform and Gaussian random magnetic fields, is investigated through a two-sublattice generalization of the Sherrington-Kirpaktrick model. The effects of the magnetic-field randomness on the phase diagrams of the model are analysed. Some confrontations of the present results with experimental observations available in the literature are discussed

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work we have studied the effects of random biquadratic and random fields in spin-glass models using the replica method. The effect of a random biquadratic coupling was studied in two spin-1 spin-glass models: in one case the interactions occur between pairs of spins, whereas in the second one the interactions occur between p spins and the limit p > oo is considered. Both couplings (spin glass and biquadratic) have zero-mean Gaussian probability distributions. In the first model, the replica-symmetric assumption reveals that the system presents two pha¬ses, namely, paramagnetic and spin-glass, separated by a continuous transition line. The stability analysis of the replica-symmetric solution yields, besides the usual instability associated with the spin-glass ordering, a new phase due to the random biquadratic cou¬plings between the spins. For the case p oo, the replica-symmetric assumption yields again only two phases, namely, paramagnetic and quadrupolar. In both these phases the spin-glass parameter is zero. Besides, it is shown that they are stable under the Almeida-Thouless stability analysis. One of them presents negative entropy at low temperatures. We developed one step of replica simmetry breaking and noticed that a new phase, the biquadratic glass phase, emerge. In this way we have obtained the correct phase diagram, with.three first-order transition lines. These lines merges in a common triple point. The effects of random fields were studied in the Sherrington-Kirkpatrick model consi¬dered in the presence of an external random magnetic field following a trimodal distribu¬tion {P{hi) = p+S(hi - h0) +Po${hi) +pS(hi + h0))- It is shown that the border of the ferromagnetic phase may present, for conveniently chosen values of p0 and hQ, first-order phase transitions, as well as tricritical points at finite temperatures. It is verified that the first-order phase transitions are directly related to the dilution in the fields: the extensions of these transitions are reduced for increasing values of po- In fact, the threshold value pg, above which all phase transitions are continuous, is calculated analytically. The stability analysis of the replica-symmetric solution is performed and the regions of validity of such a solution are identified

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is possible to show that there are three independent families of models describing a massive spin-2 particle via a rank-2 tensor. One of them contains the massive Fierz-Pauli model, the only case described by a symmetric tensor. The three families have different local symmetries in the massless limit and can not be interconnected by any local field redefinition. We show here, however, that they can be related with the help of a decoupled and nondynamic (spectator) field. The spectator field may be either an antisymmetric tensor B μν=-Bνμ, a vector Aμ or a scalar field φ, corresponding to each of the three families. The addition of the extra field allows us to formulate master actions which interpolate between the symmetric Fierz-Pauli theory and the other models. We argue that massive gravity models based on the Fierz-Pauli theory are not expected to be equivalent to possible local self-interacting theories built up on top of the two new families of massive spin-2 models. The approach used here may be useful to investigate dual (nonsymmetric) formulations of higher-spin particles. © 2013 American Physical Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We review recent progress in the mathematical theory of quantum disordered systems: the Anderson transition, including some joint work with Marchetti, the (quantum and classical) Edwards-Anderson (EA) spin-glass model and return to equilibrium for a class of spin-glass models, which includes the EA model initially in a very large transverse magnetic field. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4770066]

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The discovery of very slow pulsations (Pspin =5560 s) has solved the long-standing question of the nature of the compact object in the high-mass X-ray binary 4U 2206+54 but has posed new ones. According to spin evolutionary models in close binary systems, such slow pulsations require a neutron star magnetic field strength larger than the quantum critical value of 4.4 × 1013 G, suggesting the presence of a magnetar. We present the first XMM–Newton observations of 4U 2206+54 and investigate its spin evolution. We find that the observed spin-down rate agrees with the magnetar scenario. We analyse Integral Spacecraft Gamma-Ray Imager (ISGRI)/INTErnational Gamma-RAy Laboratory (INTEGRAL) observations of 4U 2206+54 to search for the previously suggested cyclotron resonance scattering feature at ∼30 keV. We do not find a clear indication of the presence of the line, although certain spectra display shallow dips, not always at 30 keV. The association of these dips with a cyclotron line is very dubious because of its apparent transient nature. We also investigate the energy spectrum of 4U 2206+54 in the energy range 0.3–10 keV with unprecedented detail and report for the first time the detection of very weak 6.5 keV fluorescence iron lines. The photoelectric absorption is consistent with the interstellar value, indicating very small amount of local matter, which would explain the weakness of the florescence lines. The lack of matter locally to the source may be the consequence of the relatively large orbital separation of the two components of the binary. The wind would be too tenuous in the vicinity of the neutron star.