995 resultados para SKELETAL REARRANGEMENT


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The incorporation of [1-13C]- and [2,3,4,5-13C4]1-deoxy-d-xylulose into β-carotene, lutein, phytol, and sitosterol in a cell culture of Catharanthus roseus was analyzed by NMR spectroscopy. The labeling patterns of the isoprene precursors, isopentenyl pyrophosphate and dimethylallyl pyrophosphate, were obtained from the terpenes by a retrobiosynthetic approach. 13C Enrichment and 13C13C coupling patterns showed conclusively that 1-deoxy-d-xylulose and not mevalonate is the predominant isoprenoid precursor of phytol, β-carotene, and lutein. Label from 1-deoxyxylulose was also diverted to phytosterols to a minor extent (6% relative to carotene and phytol formation). The data demonstrate that the formation of isopentenyl pyrophosphate from pentulose occurs strictly by an intramolecular rearrangement process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Specific 3-azabicyclo[3.3.1]nonane derivatives undergo skeletal cleavage when subjected to light or Lewis acidic conditions affording novel heteratricycles, which is in stark contrast to 3-oxabicyclo[3.3.1]nonanes. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Several methods were developed for converting isodigitoxigenin (2a) into methyl acetals 4b and 4c. Of these, methanolysis (followed by acetylation) of isodigitoxigenin in the presence of p-toluenesulfonic acid proved most useful. Each isomer reached an equilibrium corresponding to ca. 3:1 acetal 4c to 4b within 15 min in benzene containing p-toluenesulfonic acid. Addition of dihydropyran to the equilibrium mixture resulted in excellent conversion into vinyl ether 5a. Heating either acetal 4b or 4c in benzene containing p-toluenesulfonic acid led to a skeletal rearrangement culminating in formation of C-norcardenolide 6. In addition to results of physical measurements, the structure of spiran 6 was confirmed by degradation to methyl ketone 8. Similar rearrangement of isodigitoxigenin gave spiran 9 accompanied by C-norcardenolide 6. Treating lactone 9 with p-toluenesulfonic acid in methanol-water provided acetals 10a and 10b, which on further contact with p-toluenesulfonic acid in refluxing benzene gave lactone 9 and cardenolide 6. Evidence underlying the stereochemical assignments noted for structures 4, 9, and 10 was also discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A new strategy for the construction of the isotwistane skeleton is reported from easily available cyclohexadienes, which involves a one-pot cationic skeletal rearrangement and ene cyclisation of a bicyclo[2.2.2]octenone derivative and a cationic rearrangement of a tricyclo[5.3.0.0(4,8)]decane to a [4.3.1.0(3,7)]decane skeleton as the key steps in the synthesis of 2-pupukeanone.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel method for the construction of tricyclo[5.3.1.0(1,5)]undecane and tricyclo[6.3.1.0(1,6)]dodecane frame work has been developed. Thus the alcohols 6, 18, 21 and 29 undergo Lewis acid-catalysed rearrangement to the tricyclic ketones 5, 19, 22 and 30. Dehydrogenation of 22 to the enone 23 proves the synchronous anti-migration of the methanobridge during the skeletal rearrangement. Finally, one carbon homologation of the ketones 5 and 19 leads to the syntheses of 2-norcedrene 4 and some analogues of funebrene 20 and 30.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Herein are described the total syntheses of all members of the transtaganolide and basiliolide natural product family. Utilitzation of an Ireland–Claisen rearrangement/Diels–Alder cycloaddition cascade (ICR/DA) allowed for rapid assembly of the transtaganolide and basiliolide oxabicyclo[2.2.2]octane core. This methodology is general and was applicable to all members of the natural product family.

A brief introduction outlines all the synthetic progress previously disclosed by Lee, Dudley, and Johansson. This also includes the initial syntheses of transtaganolides C and D, as well as basiliolide B and epi-basiliolide B accomplished by Stoltz in 2011. Lastly, we discuss our racemic synthesis of basililide C and epi-basiliolide C, which utilized an ICR/DA cascade to constuct the oxabicyclo[2.2.2]octane core and formal [5+2] annulation to form the ketene-acetal containing 7-membered C-ring.

Next, we describe a strategy for an asymmetric ICR/DA cascade, by incorporation of a chiral silane directing group. This allowed for enantioselective construction of the C8 all-carbon quaternary center formed in the Ireland–Claisen rearrangement. Furthermore, a single hydride reduction and subsequent translactonization of a C4 methylester bearing oxabicyclo[2.2.2]octane core demonstrated a viable strategy for the desired skeletal rearrangement to obtain pentacyclic transtaganolides A and B. Application of the asymmetric strategy culminated in the total syntheses of (–)-transtaganolide A, (+)-transtaganolide B, (+)-transtaganolide C, and (–)-transtaganolide D. Comparison of the optical rotation data of the synthetically derived transtaganolides to that from the isolated counterparts has overarching biosynthetic implications which are discussed.

Lastly, improvement to the formal [5+2] annulation strategy is described. Negishi cross-coupling of methoxyethynyl zinc chloride using a palladium Xantphos catalyst is optimized for iodo-cyclohexene. Application of this technology to an iodo-pyrone geranyl ester allowed for formation and isolation of the eneyne product. Hydration of the enenye product forms natural metabolite basiliopyrone. Furthermore, the eneyne product can undergo an ICR/DA cascade and form transtaganolides C and D in a single step from an achiral monocyclic precursor.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The fundamental aspects of ion/neutral complex as an important intermediate of unimolecular fragmentation in mass spectrometry have been summarized in this review, especially for the classified description of its formations, characteristics, reactions, investigation methods, recent achievements and application. Meanwhile, another kind of proton-bound complex, which is a special type of ion/neutral complex, has been also introduced briefly. Among them, a part of authors' work was included.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Toluquinone-cyclopentadiene Diels-Alder epoxide adducts react with sulfur and oxygen nucleophiles under heterogeneous conditions, leading to products resulting from the epoxide ring opening and from skeletal rearrangement, respectively. Pyrolysis of the sulfanyl adducts gave the new 3-sulfanyltoluquinones (1).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cunha TF, Moreira JB, Paixao NA, Campos JC, Monteiro AW, Bacurau AV, Bueno CR Jr., Ferreira JC, Brum PC. Aerobic exercise training upregulates skeletal muscle calpain and ubiquitin-proteasome systems in healthy mice. J Appl Physiol 112: 1839-1846, 2012. First published March 29, 2012; doi:10.1152/japplphysiol.00346.2011.-Aerobic exercise training (AET) is an important mechanical stimulus that modulates skeletal muscle protein turnover, leading to structural rearrangement. Since the ubiquitin-proteasome system (UPS) and calpain system are major proteolytic pathways involved in protein turnover, we aimed to investigate the effects of intensity-controlled AET on the skeletal muscle UPS and calpain system and their association to training-induced structural adaptations. Long-lasting effects of AET were studied in C57BL/6J mice after 2 or 8 wk of AET. Plantaris cross-sectional area (CSA) and capillarization were assessed by myosin ATPase staining. mRNA and protein expression levels of main components of the UPS and calpain system were evaluated in plantaris by real-time PCR and Western immunoblotting, respectively. No proteolytic system activation was observed after 2 wk of AET. Eight weeks of AET resulted in improved running capacity, plantaris capillarization, and CSA. Muscle RING finger-1 mRNA expression was increased in 8-wk-trained mice. Accordingly, elevated 26S proteasome activity was observed in the 8-wk-trained group, without accumulation of ubiquitinated or carbonylated proteins. In addition, calpain abundance was increased by 8 wk of AET, whereas no difference was observed in its endogenous inhibitor calpastatin. Taken together, our findings indicate that skeletal muscle enhancements, as evidenced by increased running capacity, plantaris capillarization, and CSA, occurred in spite of the upregulated UPS and calpain system, suggesting that overactivation of skeletal muscle proteolytic systems is not restricted to atrophying states. Our data provide evidence for the contribution of the UPS and calpain system to metabolic turnover of myofibrillar proteins and skeletal muscle adaptations to AET.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of capillaries is to serve as the interface for delivery of oxygen and removal of metabolites to/from tissues. During the past decade there has been a proliferation of studies that have advanced our understanding of angiogenesis demonstrating tissue capillary supply is under strict control during health, but poorly controlled in disease - resulting in either excessive capillary growth (pathological angiogenesis) or losses in capillarity (rarefaction). Given that skeletal muscle comprises nearly 40% of body mass in humans, skeletal muscle capillary density has a significant impact on metabolism, endocrine function, and locomotion, and is tightly regulated at many different levels. Skeletal muscle is also high adaptable, and thus one of the few organ systems which can be experimentally manipulated (e.g. by exercise) to study physiologic regulation of angiogenesis. This review will focus on 1) the methodological concerns that have arisen in determining skeletal muscle capillarity, and 2) highlight the concepts that are reshaping our understanding of the angio-adaptation process. We also summarize selected new findings (physical influences, molecular changes and ultrastructural rearrangement of capillaries) that identify areas of future research with the greatest potential to expand our understanding of how angiogenesis is normally regulated, and that may also help to better understand conditions of uncontrolled (pathologic) angiogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Certain 3-azabicyclo[3.3.1] nonane derivatives undergo unprecedented stereospecific skeletal cleavage when subjected to light affording a novel heterotricyclic skeleton.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Physiological responses to environmental stress are increasingly well studied in scleractinian corals. This work reports a new stress-related skeletal structure we term clypeotheca. Clypeotheca was observed in several livecollected common reef-building coral genera and a two to three kya subfossil specimen from Heron Reef, Great Barrier Reef and consists of an epitheca-like skeletal wall that seals over the surface of parts of the corallum in areas of stress or damage. It appears to form from a coordinated process wherein neighboring polyps and adjoining coenosarc seal themselves off from the surrounding environment as they contract and die. Clypeotheca forms from inward skeletal centripetal growth at the edges of corallites and by the merging of flange-like outgrowths that surround individual spines over the surface of the coenosteum. Microstructurally, the merged flanges are similar to upsidedown dissepiments and true epitheca. Clypeotheca is interpreted primarily as a response to stress that may help protect the colony from invasion of unhealthy tissues by parasites or disease by retracting tissues in areas that have become unhealthy for the polyps. Identification of skeletal responses of corals to environmental stress may enable the frequency of certain types of environmental stress to be documented in past environments. Such data may be important for understanding the nature of reef dynamics through intervals of climate change and for monitoring the effects of possible anthropogenic stress in modern coral reef habitats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In children, joint hypermobility (typified by structural instability of joints) manifests clinically as neuro-muscular and musculo-skeletal conditions and conditions associated with development and organization of control of posture and gait (Finkelstein, 1916; Jahss, 1919; Sobel, 1926; Larsson, Mudholkar, Baum and Srivastava, 1995; Murray and Woo, 2001; Hakim and Grahame, 2003; Adib, Davies, Grahame, Woo and Murray, 2005:). The process of control of the relative proportions of joint mobility and stability, whilst maintaining equilibrium in standing posture and gait, is dependent upon the complex interrelationship between skeletal, muscular and neurological function (Massion, 1998; Gurfinkel, Ivanenko, Levik and Babakova, 1995; Shumway-Cook and Woollacott, 1995). The efficiency of this relies upon the integrity of neuro-muscular and musculo-skeletal components (ligaments, muscles, nerves), and the Central Nervous System’s capacity to interpret, process and integrate sensory information from visual, vestibular and proprioceptive sources (Crotts, Thompson, Nahom, Ryan and Newton, 1996; Riemann, Guskiewicz and Shields, 1999; Schmitz and Arnold, 1998) and development and incorporation of this into a representational scheme (postural reference frame) of body orientation with respect to internal and external environments (Gurfinkel et al., 1995; Roll and Roll, 1988). Sensory information from the base of support (feet) makes significant contribution to the development of reference frameworks (Kavounoudias, Roll and Roll, 1998). Problems with the structure and/ or function of any one, or combination of these components or systems, may result in partial loss of equilibrium and, therefore ineffectiveness or significant reduction in the capacity to interact with the environment, which may result in disability and/ or injury (Crotts et al., 1996; Rozzi, Lephart, Sterner and Kuligowski, 1999b). Whilst literature focusing upon clinical associations between joint hypermobility and conditions requiring therapeutic intervention has been abundant (Crego and Ford, 1952; Powell and Cantab, 1983; Dockery, in Jay, 1999; Grahame, 1971; Childs, 1986; Barton, Bird, Lindsay, Newton and Wright, 1995a; Rozzi, et al., 1999b; Kerr, Macmillan, Uttley and Luqmani, 2000; Grahame, 2001), there has been a deficit in controlled studies in which the neuro-muscular and musculo-skeletal characteristics of children with joint hypermobility have been quantified and considered within the context of organization of postural control in standing balance and gait. This was the aim of this project, undertaken as three studies. The major study (Study One) compared the fundamental neuro-muscular and musculo-skeletal characteristics of 15 children with joint hypermobility, and 15 age (8 and 9 years), gender, height and weight matched non-hypermobile controls. Significant differences were identified between previously undiagnosed hypermobile (n=15) and non-hypermobile children (n=15) in passive joint ranges of motion of the lower limbs and lumbar spine, muscle tone of the lower leg and foot, barefoot CoP displacement and in parameters of barefoot gait. Clinically relevant differences were also noted in barefoot single leg balance time. There were no differences between groups in isometric muscle strength in ankle dorsiflexion, knee flexion or extension. The second comparative study investigated foot morphology in non-weight bearing and weight bearing load conditions of the same children with and without joint hypermobility using three dimensional images (plaster casts) of their feet. The preliminary phase of this study evaluated the casting technique against direct measures of foot length, forefoot width, RCSP and forefoot to rearfoot angle. Results indicated accurate representation of elementary foot morphology within the plaster images. The comparative study examined the between and within group differences in measures of foot length and width, and in measures above the support surface (heel inclination angle, forefoot to rearfoot angle, normalized arch height, height of the widest point of the heel) in the two load conditions. Results of measures from plaster images identified that hypermobile children have different barefoot weight bearing foot morphology above the support surface than non-hypermobile children, despite no differences in measures of foot length or width. Based upon the differences in components of control of posture and gait in the hypermobile group, identified in Study One and Study Two, the final study (Study Three), using the same subjects, tested the immediate effect of specifically designed custom-made foot orthoses upon balance and gait of hypermobile children. The design of the orthoses was evaluated against the direct measures and the measures from plaster images of the feet. This ascertained the differences in morphology of the modified casts used to mould the orthoses and the original image of the foot. The orthoses were fitted into standardized running shoes. The effect of the shoe alone was tested upon the non-hypermobile children as the non-therapeutic equivalent condition. Immediate improvement in balance was noted in single leg stance and CoP displacement in the hypermobile group together with significant immediate improvement in the percentage of gait phases and in the percentage of the gait cycle at which maximum plantar flexion of the ankle occurred in gait. The neuro-muscular and musculo-skeletal characteristics of children with joint hypermobility are different from those of non-hypermobile children. The Beighton, Solomon and Soskolne (1973) screening criteria successfully classified joint hypermobility in children. As a result of this study joint hypermobility has been identified as a variable which must be controlled in studies of foot morphology and function in children. The outcomes of this study provide a basis upon which to further explore the association between joint hypermobility and neuro-muscular and musculo-skeletal conditions, and, have relevance for the physical education of children with joint hypermobility, for footwear and orthotic design processes, and, in particular, for clinical identification and treatment of children with joint hypermobility.