889 resultados para Rna Degradation
Resumo:
Initially identified in yeast, the exosome has emerged as a central component of the RNA maturation and degradation machinery both in Archaea and eukaryotes. Here we describe a series of high-resolution structures of the RNase PH ring from the Pyrococcus abyssi exosome, one of them containing three 10-mer RNA strands within the exosome catalytic chamber, and report additional nucleotide interactions involving positions N5 and N7. Residues from all three Rrp41-Rrp42 heterodimers interact with a single RNA molecule, providing evidence for the functional relevance of exosome ring-like assembly in RNA processivity. Furthermore, an ADP-bound structure showed a rearrangement of nucleotide interactions at site N1, suggesting a rationale for the elimination of nucleoside diphosphate after catalysis. In combination with RNA degradation assays performed with mutants of key amino acid residues, the structural data presented here provide support for a model of exosome-mediated RNA degradation that integrates the events involving catalytic cleavage, product elimination, and RNA translocation. Finally, comparisons between the archaeal and human exosome structures provide a possible explanation for the eukaryotic exosome inability to catalyze phosphate-dependent RNA degradation.
Understanding the mechanism of RNA degradation in the mammalian nonsense-mediated mRNA decay pathway
Resumo:
It has been highlighted that RNA quality and appropriate reference gene selection is crucial for the interpretation of RT-qPCR results in human placental samples. In this context we investigated the effect of RNA degradation on the mRNA abundance of seven frequently used reference genes in 119 human placental samples. Combining RNA integrity measurements, RT-qPCR analysis and mathematical modeling we found major differences regarding the effect of RNA degradation on the measured expression levels between the different reference genes. Furthermore, we demonstrated that a modified RNA extraction method significantly improved RNA quality and consequently increased transcript levels of all reference genes.
Resumo:
Funding: This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 613960 (SMARTBEES) (http://www.smartbees-fp7.eu/) and Veterinary Medicines Directorate, Department for Environment Food & Rural Affairs (Project # VM0517) (https://www.gov.uk/government/organisations/veterinary-medicines-directorate). CHM was supported by a Biosciences Knowledge Transfer Network Biotechnology and Biological Sciences Research Council (KTN-BBSRC CASE) Studentship (BB/L502467/1) (http://www.bbsrc.ac.uk/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Acknowledgments We gratefully acknowledge Mr Sebastian Bacz’s expert help and advice with beekeeping.
Resumo:
The aims of this study were to test (i) the effect of time of tissue and RNA extracts storage on ice and (ii) the effect of repeated freeze–thaw cycles on RNA integrity and gene expression of bovine reproductive tissues. Fragments of endometrium (ENDO), corpus luteum (CL) and ampulla (AMP) were subdivided and incubated for 0, 1, 3, 6, 12 or 24 h on ice. RNA extracts were incubated on ice for 0, 3, 12 or 24 h, or exposed to 1, 2, 4 or 6 freeze–thaw cycles. RNA integrity number (RIN) was estimated. Expression of progesterone receptor (PGR) and cyclophilin genes from RNA extracts stored on ice for 0 or 24 h, and 1 or 6 freeze–thaw cycles was measured by qPCR. Tissue and RNA extract incubation on ice, and repeated freeze–thaw cycles did not affect RIN values of RNA from ENDO, CL or AMP. Storage on ice or exposure to freeze–thaw cycles did not affect Cq values for PGR or cyclophilin genes. In conclusion, neither generalized RNA degradation nor specific RNA degradation was affected by storage of tissue or RNA extracts on ice for up to 24 h, or by up to 6 freeze–thaw cycles of RNA extracts obtained from bovine ENDO, CL and AMP.
Resumo:
Tumor Suppressor Candidate 2 (TUSC2) is a novel tumor suppressor gene located in the human chromosome 3p21.3 region. TUSC2 mRNA transcripts could be detected on Northern blots in both normal lung and some lung cancer cell lines, but no endogenous TUSC2 protein could be detected in a majority of lung cancer cell lines. Mechanisms regulating TUSC2 protein expression and its inactivation in primary lung cancer cells are largely unknown. We investigated the role of the 5’- and 3’-untranslated regions (UTRs) of the TUSC2 gene in the regulation of TUSC2 protein expression. We found that two small upstream open-reading frames (uORFs) in the 5’UTR of TUSC2 could markedly inhibit the translational initiation of TUSC2 protein by interfering with the “scanning” of the ribosome initiation complexes. Site-specific stem-loop array reverse transcription-polymerase chain reaction (SLA-RT-PCR) verified several micoRNAs (miRNAs) targeted at 3’UTR and directed TUSC2 cleavage and degradation. In addition, we used the established let-7-targeted high mobility group A2 (Hmga2) mRNA as a model system to study the mechanism of regulation of target mRNA by miRNAs in mammalian cells under physiological conditions. There have been no evidence of direct link between mRNA downregulation and mRNA cleavages mediated by miRNAs. Here we showed that the endonucleolytic cleavages on mRNAs were initiated by mammalian miRNA in seed pairing style. Let-7 directed cleavage activities among the eight predicted potential target sites have varied efficiency, which are influenced by the positional and the structural contexts in the UTR. The 5’ cleaved RNA fragments were mostly oligouridylated at their 3’-termini and accumulated for delayed 5’–3’ degradation. RNA fragment oligouridylation played important roles in marking RNA fragments for delayed bulk degradation and in converting RNA degradation mode from 3’–5’ to 5’–3’ with cooperative efforts from both endonucleolytic and non-catalytic miRNA-induced silencing complex (miRISC). Our findings point to a mammalian miRNA-mediated mechanism for the regulation of mRNA that miRNA can decrease target mRNA through target mRNA cleavage and uridine addition
Resumo:
Three small nucleolar RNAs (snoRNAs), E1, E2 and E3, have been described that have unique sequences and interact directly with unique segments of pre-rRNA in vivo. In this report, injection of antisense oligodeoxynucleotides into Xenopus laevis oocytes was used to target the specific degradation of these snoRNAs. Specific disruptions of pre-rRNA processing were then observed, which were reversed by injection of the corresponding in vitro-synthesized snoRNA. Degradation of each of these three snoRNAs produced a unique rRNA maturation phenotype. E1 RNA depletion shut down 18 rRNA formation, without overaccumulation of 20S pre-rRNA. After E2 RNA degradation, production of 18S rRNA and 36S pre-rRNA stopped, and 38S pre-rRNA accumulated, without overaccumulation of 20S pre-rRNA. E3 RNA depletion induced the accumulation of 36S pre-rRNA. This suggests that each of these snoRNAs plays a different role in pre-rRNA processing and indicates that E1 and E2 RNAs are essential for 18S rRNA formation. The available data support the proposal that these snoRNAs are at least involved in pre-rRNA processing at the following pre-rRNA cleavage sites: E1 at the 5′ end and E2 at the 3′ end of 18S rRNA, and E3 at or near the 5′ end of 5.8S rRNA.
Resumo:
Tumor necrosis factor alpha (TNF-alpha) is well-characterized for its necrotic action against tumor cells; however, it has been increasingly associated with an apoptosis-inducing potential on target cells. While the signaling events and the actual cytolytic mechanism(s) for both TNF-alpha-induced necrosis and apoptosis remain to be fully elucidated, we report here on (i) the ability of TNF-alpha to induce apoptosis in the promonocytic U937 cells, (ii) the discovery of a cross-talk between the TNF-alpha and the interferon signaling pathways, and (iii) the pivotal role of interferon-inducible, double-stranded RNA-activated protein kinase (PKR) in the induction of apoptosis by TNF-alpha. Our data from microscopy studies, trypan blue exclusion staining, and apoptotic DNA ladder electrophoresis revealed that a subclone derived from U937 and carrying a PKR antisense expression vector was resistant to TNF-alpha-induced apoptosis. Further, TNF-alpha initiated a generalized RNA degradation process in which the participation of PKR was required. Finally, the PKR gene is a candidate "death gene" since overexpression of this gene could bring about apoptosis in U937 cells.
Resumo:
Background: Although there is evidence that post-mortem interval (PMI) is not a major contributor to reduced overall RNA integrity, it may differentially affect a subgroup of gene transcripts that are susceptible to PMI-related degradation. This would particularly have ramifications for microarray studies that include a broad spectrum of genes. Method: Brain tissue was removed from adult mice at 0, 6, 12, 18, 24,36 and 48 h post-mortem. RNA transcript abundance was measured by hybridising RNA from the zero time point with test RNA from each PMI time point, and differential gene expression was assessed using cDNA microarrays. Sequence and ontological analyses were performed on the group of RNA transcripts showing greater than two-fold reduction. Results: Increasing PMI was associated with decreased tissue pH and increased RNA degradation as indexed by 28S/18S ribosomal RNA ratio. Approximately 12% of mRNAs detected on the arrays displayed more than a two-fold decrease in abundance by 48 It post-mortem. An analysis of nucleotide composition provided evidence that transcripts with the AUUUA motif in the 3' untranslated region (3'UTR) were more susceptible to PMI-related RNA degradation, compared to transcripts not carrying the 3'UTR AUUUA motif. Consistent with this finding, ontological analysis showed transcription factors and elements to be over-represented in the group of transcripts susceptible to degradation. Conclusion: A subgroup of mammalian mRNA transcripts are particularly susceptible to PMI-related degradation, and as a group, they are more likely to carry the YUTR AUUUA motif. PMI should be controlled for in human and animal model post-mortem brain studies, particularly those including a broad spectrum of mRNA transcripts. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Bis-(3´-5´)-cyclic dimeric guanosine monophosphate, or cyclic di-GMP (c-di-GMP) is a ubiquitous bacterial second messenger that regulates processes such biofilm formation, motility, and virulence. C-di-GMP is synthesized by diguanylate cyclases (DGCs), while phosphodiesterases (PDE-As) end signaling by linearizing c-di-GMP to 5ʹ-phosphoguanylyl-(3ʹ,5ʹ)-guanosine (pGpG), which is then hydrolyzed to two GMPs by previously unidentified enzymes termed PDE-Bs. To identify the PDE-B responsible for pGpG turnover, a screen for pGpG binding proteins in a Vibrio cholerae open reading frame library was conducted to identify potential pGpG binding proteins. This screen led to identification of oligoribonuclease (Orn). Purified Orn binds to pGpG and can cleave pGpG to GMP in vitro. A deletion mutant of orn in Pseudomonas aeruginosa was highly defective in pGpG turnover and accumulated pGpG. Deletion of orn also resulted in accumulation c-di-GMP, likely through pGpG-mediated inhibition of the PDE-As, causing an increase in c-di-GMP-governed auto-aggregation and biofilm. Thus, we found that Orn serves as the primary PDE-B enzyme in P. aeruginosa that removes pGpG, which is necessary to complete the final step in the c-di-GMP degradation pathway. However, not all bacteria that utilize c-di-GMP signaling also have an ortholog of orn, suggesting that other PDE-Bs must be present. Therefore, we asked whether RNases that cleave small oligoribonucleotides in other species could also act as PDE-Bs. NrnA, NrnB, and NrnC can rapidly degrade pGpG to GMP. Furthermore, they can reduce the elevated aggregation and biofilm formation in P. aeruginosa ∆orn. Together, these results indicate that rather than having a single dedicated PDE-B, different bacteria utilize distinct RNases to cleave pGpG and complete c-di-GMP signaling. The ∆orn strain also has a growth defect, indicating changes in other regulatory processes that could be due to pGpG accumulation, c-di-GMP accumulation, or another effect due to loss of Orn. We sought to investigate the genetic pathways responsible for these growth defect phenotypes by use of a transposon suppressor screen, and also investigated transcriptional changes using RNA-Seq. This work identifies that c-di-GMP degradation intersects with RNA degradation at the point of the Orn and the functionally related RNases.
Resumo:
Background: The archaeal exosome is formed by a hexameric RNase PH ring and three RNA binding subunits and has been shown to bind and degrade RNA in vitro. Despite extensive studies on the eukaryotic exosome and on the proteins interacting with this complex, little information is yet available on the identification and function of archaeal exosome regulatory factors. Results: Here, we show that the proteins PaSBDS and PaNip7, which bind preferentially to poly-A and AU-rich RNAs, respectively, affect the Pyrococcus abyssi exosome activity in vitro. PaSBDS inhibits slightly degradation of a poly-rA substrate, while PaNip7 strongly inhibits the degradation of poly-A and poly-AU by the exosome. The exosome inhibition by PaNip7 appears to depend at least partially on its interaction with RNA, since mutants of PaNip7 that no longer bind RNA, inhibit the exosome less strongly. We also show that FITC-labeled PaNip7 associates with the exosome in the absence of substrate RNA. Conclusions: Given the high structural homology between the archaeal and eukaryotic proteins, the effect of archaeal Nip7 and SBDS on the exosome provides a model for an evolutionarily conserved exosome control mechanism.
Resumo:
The yeast nucleolar protein Nop8p has previously been shown to interact with Nip7p and to be required for 60S ribosomal subunit formation. Although depletion of Nop8p in yeast cells leads to premature degradation of rRNAs, the biochemical mechanism responsible for this phenotype is still not known. In this work, we show that the Nop8p amino-terminal region mediates interaction with the 5.8S rRNA, while its carboxyl-terminal portion interacts with Nip7p and can partially complement the growth defect of the conditional mutant strain Dnop8/GAL:NOP8. Interestingly, Nop8p mediates association of Nip7p to pre-ribosomal particles. Nop8p also interacts with the exosome subunit Rrp6p and inhibits the complex activity in vitro, suggesting that the decrease in 60S ribosomal subunit levels detected upon depletion of Nop8p may result from degradation of pre-rRNAs by the exosome. These results strongly indicate that Nop8p may control the exosome function during pre-rRNA processing.
Resumo:
RESUMO:Os microrganismos reagem à súbita descida de temperatura através de uma resposta adaptativa específica que assegura a sua sobrevivência em condições desfavoráveis. Esta adaptação inclui alterações na composição da membrana, na maquinaria de tradução e transcrição. A resposta ao choque térmico pelo frio induz uma repressão da transcrição. No entanto, a descida de temperatura induz a produção de um grupo de proteínas específicas que ajudam a ajustar/re-ajustar o metabolismo celular às novas condições ambientais. Em E. coli o processo de adaptação demora apenas quatro horas, no qual um grupo de proteínas específicas são induzidas. Depois desde período recomeça lentamente a produção de proteínas.A ribonuclease R, uma das proteínas induzidas durante o choque térmico pelo frio, é uma das principais ribonucleases em E. coli envolvidas na degradação do RNA. É uma exoribonuclease que degrada RNA de cadeia dupla, possui funções importantes na maturação e “turnover” do RNA, libertação de ribossomas e controlo de qualidade de proteínas e RNAs. O nível celular desta enzima aumenta até dez vezes após exposição ao frio e estabiliza em células na fase estacionária. A capacidade de degradar RNA de dupla cadeia é importante a baixas temperaturas quando as estruturas de RNA estão mais estáveis. No entanto, este mecanismo é desconhecido. Embora a resposta específica ao “cold shock” tenha sido descoberta há mais de duas décadas e o número de proteínas envolvidas sugerirem que esta adaptação é rápida e simples, continuamos longe de compreender este processo. No nosso trabalho pretendemos descobrir proteínas que interactuem com a RNase R em condições ambientais diferentes através do método “TAP-tag” e espectrometria de massa. A informação obtida pode ser utilizada para deduzir algumas das novas funções da RNase R durante a adaptação bacteriana ao frio e durante a fase estacionária. Mais importante ainda, RNase R poderá ser recrutada para um complexo de proteínas de elevado peso molecular durante o “cold-shock”.------------ABSTRACT:Microorganisms react to the rapid temperature downshift with a specific adaptative response that ensures their survival in unfavorable conditions. Adaptation includes changes in membrane composition, in translation and transcription machinery. Cold shock response leads to overall repression of translation. However, temperature downshift induces production of a set of specific proteins that help to tune cell metabolism and readjust it to the new environmental conditions. For Escherichia coli the adaptation process takes only about four hours with a relatively small set of specifically induced proteins involved. After this time, protein production resumes, although at a slower rate. One of the cold inducible proteins is RNase R, one of the main E. coli ribonucleases involved in RNA degradation. RNase R is an exoribonuclease that digest double stranded RNA, serves important functions in RNA maturation and turnover, release of stalled ribosomes by trans-translation, and RNA and protein quality control. The level of this enzyme increases about ten-fold after cold induction, and it is also stabilised in cells growing in stationary phase. The RNase R ability to digest structured RNA is important at low temperatures where RNA structures are stabilized but the exact role of this mechanism remains unclear. Although specific bacterial cold shock response was discovered over two decades ago and the number of proteins involved suggests that this adaptation is fast and simple, we are still far from understanding this process. In our work we aimed to discover the proteins interacting with RNase R in different environmental conditions using TAP tag method and mass spectrometry analysis. The information obtained can be used to deduce some of the new functions of RNase R during adaptation of bacteria to cold and in stationary growth phase. Most importantly RNase R can be recruited into a high molecular mass complex of protein in cold shock.