Insights into the mechanism of progressive RNA degradation by the archaeal exosome
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2008
|
Resumo |
Initially identified in yeast, the exosome has emerged as a central component of the RNA maturation and degradation machinery both in Archaea and eukaryotes. Here we describe a series of high-resolution structures of the RNase PH ring from the Pyrococcus abyssi exosome, one of them containing three 10-mer RNA strands within the exosome catalytic chamber, and report additional nucleotide interactions involving positions N5 and N7. Residues from all three Rrp41-Rrp42 heterodimers interact with a single RNA molecule, providing evidence for the functional relevance of exosome ring-like assembly in RNA processivity. Furthermore, an ADP-bound structure showed a rearrangement of nucleotide interactions at site N1, suggesting a rationale for the elimination of nucleoside diphosphate after catalysis. In combination with RNA degradation assays performed with mutants of key amino acid residues, the structural data presented here provide support for a model of exosome-mediated RNA degradation that integrates the events involving catalytic cleavage, product elimination, and RNA translocation. Finally, comparisons between the archaeal and human exosome structures provide a possible explanation for the eukaryotic exosome inability to catalyze phosphate-dependent RNA degradation. |
Identificador |
JOURNAL OF BIOLOGICAL CHEMISTRY, v.283, n.20, p.14120-14131, 2008 0021-9258 http://producao.usp.br/handle/BDPI/30897 10.1074/jbc.M801005200 |
Idioma(s) |
eng |
Publicador |
AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC |
Relação |
Journal of Biological Chemistry |
Direitos |
restrictedAccess Copyright AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC |
Palavras-Chave | #YEAST EXOSOME #RIBOSOMAL-RNA #NUCLEAR SURVEILLANCE #POLY(A) POLYMERASE #STRUCTURAL BASIS #QUALITY CONTROL #MESSENGER-RNAS #COMPLEX #PROTEIN #PATHWAY #Biochemistry & Molecular Biology |
Tipo |
article original article publishedVersion |