906 resultados para Repression


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report considers extant data which have been sourced with respect to some of the consequences of violent acts and incidents and risky behaviour for males living in regional and remote Australia . This has been collated and presented under the headings: juvenile offenders; long-term health consequences; anxiety and repression; and other chronic disabilities. Additional commentary resulting from exploration, examination and analyses of secondary data is published online in complementary reports in this series.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-state insurgent actors are too weak to compel powerful adversaries to their will, so they use violence to coerce. A principal objective is to grow and sustain violent resistance to the point that it either militarily challenges the state, or more commonly, generates unacceptable political costs. To survive, insurgents must shift popular support away from the state and to grow they must secure it. State actor policies and actions perceived as illegitimate and oppressive by the insurgent constituency can generate these shifts. A promising insurgent strategy is to attack states in ways that lead angry publics and leaders to discount the historically established risks and take flawed but popular decisions to use repressive measures. Such decisions may be enabled by a visceral belief in the power of coercion and selective use of examples of where robust measures have indeed suppressed resistance. To avoid such counterproductive behaviours the cases of apparent 'successful repression' must be understood. This thesis tests whether robust state action is correlated with reduced support for insurgents, analyses the causal mechanisms of such shifts and examines whether such reduction is because of compulsion or coercion? The approach is founded on prior research by the RAND Corporation which analysed the 30 insurgencies most recently resolved worldwide to determine factors of counterinsurgent success. This new study first re-analyses their data at a finer resolution with new queries that investigate the relationship between repression and insurgent active support. Having determined that, in general, repression does not correlate with decreased insurgent support, this study then analyses two cases in which the data suggests repression seems likely to be reducing insurgent support: the PKK in Turkey and the insurgency against the Vietnamese-sponsored regime after their ousting of the Khmer Rouge. It applies 'structured-focused' case analysis with questions partly built from the insurgency model of Leites and Wolf, who are associated with the advocacy of US robust means in Vietnam. This is thus a test of 'most difficult' cases using a 'least likely' test model. Nevertheless, the findings refute the deterrence argument of 'iron fist' advocates. Robust approaches may physically prevent effective support of insurgents but they do not coercively deter people from being willing to actively support the insurgency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction Epithelial-to-mesenchymal transition (EMT) promotes cell migration and is important in metastasis. Cellular proliferation is often downregulated during EMT, and the reverse transition (MET) in metastases appears to be required for restoration of proliferation in secondary tumors. We studied the interplay between EMT and proliferation control by MYB in breast cancer cells. Methods MYB, ZEB1, and CDH1 expression levels were manipulated by lentiviral small-hairpin RNA (shRNA)-mediated knockdown/overexpression, and verified with Western blotting, immunocytochemistry, and qRT-PCR. Proliferation was assessed with bromodeoxyuridine pulse labeling and flow cytometry, and sulforhodamine B assays. EMT was induced with epidermal growth factor for 9 days or by exposure to hypoxia (1% oxygen) for up to 5 days, and assessed with qRT-PCR, cell morphology, and colony morphology. Protein expression in human breast cancers was assessed with immunohistochemistry. ZEB1-MYB promoter binding and repression were determined with Chromatin Immunoprecipitation Assay and a luciferase reporter assay, respectively. Student paired t tests, Mann–Whitney, and repeated measures two-way ANOVA tests determined statistical significance (P < 0.05). Results Parental PMC42-ET cells displayed higher expression of ZEB1 and lower expression of MYB than did the PMC42-LA epithelial variant. Knockdown of ZEB1 in PMC42-ET and MDA-MB-231 cells caused increased expression of MYB and a transition to a more epithelial phenotype, which in PMC42-ET cells was coupled with increased proliferation. Indeed, we observed an inverse relation between MYB and ZEB1 expression in two in vitro EMT cell models, in matched human breast tumors and lymph node metastases, and in human breast cancer cell lines. Knockdown of MYB in PMC42-LA cells (MYBsh-LA) led to morphologic changes and protein expression consistent with an EMT. ZEB1 expression was raised in MYBsh-LA cells and significantly repressed in MYB-overexpressing MDA-MB-231 cells, which also showed reduced random migration and a shift from mesenchymal to epithelial colony morphology in two dimensional monolayer cultures. Finally, we detected binding of ZEB1 to MYB promoter in PMC42-ET cells, and ZEB1 overexpression repressed MYB promoter activity. Conclusions This work identifies ZEB1 as a transcriptional repressor of MYB and suggests a reciprocal MYB-ZEB1 repressive relation, providing a mechanism through which proliferation and the epithelial phenotype may be coordinately modulated in breast cancer cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have identified a methanol- and biotin-starvation-inducible zinc finger protein named ROP [repressor of phosphoenolpyruvate carboxykinase (PEPCK)] in the methylotrophic yeast Pichia pastoris. When P. pastoris strain GS115 (wild-type, WT) is cultured in biotin-deficient, glucose-ammonium (Bio(-)) medium, growth is suppressed due to the inhibition of anaplerotic synthesis of oxaloacetate, catalysed by the biotin-dependent enzyme pyruvate carboxylase (PC). Deletion of ROP results in a strain (Delta ROP) that can grow under biotin-deficient conditions due to derepression of a biotin- and PC-independent pathway of anaplerotic synthesis of oxaloacetate. Northern analysis as well as microarray expression profiling of RNA isolated from WT and Delta ROP strains cultured in Bio(-) medium indicate that expression of the phosphoenolpyruvate carboxykinase gene (PEPCK) is induced in Delta ROP during biotin- or PC-deficiency even under glucose-abundant conditions. There is an excellent correlation between PEPCK expression and growth of Delta ROP in Bio(-) medium, suggesting that ROP-mediated regulation of PEPCK may have a crucial role in the biotin- and PC-independent growth of the Delta ROP strain. To our knowledge, ROP is the first example of a zinc finger transcription factor involved in the catabolite repression of PEPCK in yeast cells cultured under biotin- or PC-deficient and glucose-abundant conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The regulation of phospholipid biosynthesis in Saccharomyces cerevisiae through cis-acting upstream activating sequence inositol (UAS(ino)) and trans-acting elements, such as the INO2-INO4 complex and OPI1 by inositol supplementation in growth is thoroughly studied. In this study, we provide evidence for the regulation of lipid biosynthesis by phosphatidylinositol-specific phospholipase C (PLC) through UAS(ino) and the trans-acting elements. Gene expression analysis and radiolabelling experiments demonstrated that the overexpression of rice PLC in yeast cells altered phospholipid biosynthesis at the levels of transcriptional and enzyme activity. This is the first report implicating PLC in the direct regulation of lipid biosynthesis. (C) 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Wilms tumor 1 gene (WT1) can either repress or induce the expression of genes. Inconsistent with its tumor suppressor role, elevated WT1 levels have been observed in leukemia and solid tumors. WT1 has also been suggested to act as an oncogene by inducing the expression of MYC and BCL-2. However, these are only the correlational studies, and no functional study has been performed to date. Consistent with its tumor suppressor role, CDC73 binds to RNA polymerase II as part of a PAF1 transcriptional regulatory complex and causes transcriptional repression of oncogenes MYC and CCND1. It also represses beta-catenin-mediated transcription. Based on the reduced level of CDC73 in oral squamous cell carcinoma (OSCC) samples in the absence of loss-of-heterozygosity, promoter methylation, and mutations, we speculated that an inhibitory transcription factor is regulating its expression. The bioinformatics analysis predicted WT1 as an inhibitory transcription factor to regulate the CDC73 level. Our results showed that overexpression of WT1 decreased CDC73 levels and promoted proliferation of OSCC cells. ChIP and EMSA results demonstrated binding of WT1 to the CDC73 promoter. The 5-azacytidine treatment of OSCC cells led to an up-regulation of WT1 with a concomitant down-regulation of CDC73, further suggesting regulation of CDC73 by WT1. Exogenous CDC73 attenuated the protumorigenic activity of WT1 by apoptosis induction. An inverse correlation between expression levels of CDC73 and WT1 was observed in OSCC samples. These observations indicated that WT1 functions as an oncogene by repressing the expression of CDC73 in OSCC. We suggest that targeting WT1 could be a therapeutic strategy for cancer, including OSCC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Emerging evidence indicates that precise regulation of iron (Fe) metabolism and maintenance of Fe homeostasis in Mycobacterium tuberculosis (Mtb) are essential for its survival and proliferation in the host. IdeR is a central transcriptional regulator of Mtb genes involved in Fe metabolism. While it is well understood how IdeR functions as a repressor, how it induces transcription of a subset of its targets is still unclear. We investigated the molecular mechanism of IdeR-mediated positive regulation of bfrB, the gene encoding the major Fe-storage protein of Mtb. We found that bfrB induction by Fe required direct interaction of IdeR with a DNA sequence containing four tandem IdeR-binding boxes located upstream of the bfrB promoter. Results of in vivo and in vitro transcription assays identified a direct repressor of bfrB, the histone-like protein Lsr2. IdeR counteracted Lsr2-mediated repression in vitro, suggesting that IdeR induces bfrB transcription by antagonizing the repressor activity of Lsr2. Together, these results elucidate the main mechanism of bfrB positive regulation by IdeR and identify Lsr2 as a new factor contributing to Fe homeostasis in mycobacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to reproduce is a defining characteristic of all living organisms. During reproduction, the integrity of genetic material transferred from one generation to the next is of utmost importance. Organisms have diverse strategies to ensure the fidelity of genomic information inherited between generations of individuals. In sexually reproducing animals, the piRNA pathway is an RNA-interference (RNAi) mechanism that protects the genomes of germ cells from the replication of ‘selfish’ genetic sequences called transposable elements (TE). When left unabated, the replication of TE sequences can cause gene disruption, double-stranded DNA breaks, and germ cell death that results in sterility of the organism. In Drosophila, the piRNA pathway is divided into a cytoplasmic and nuclear branch that involves the functions of three Piwi-clade Argonaute proteins—Piwi, Aubergine (Aub) and Argonaute-3 (Ago3)—which bind piwi-interacting RNA (piRNA) to form the effector complexes that represses deleterious TE sequences.

The work presented in this thesis examines the function and regulation of Piwi proteins in Drosophila germ cells. Chapter 1 presents an introduction to piRNA biogenesis and to the essential roles occupied by each Piwi protein in the repression of TE. We discuss the architecture and function of germ granules as the cellular compartments where much of the piRNA pathway operates. In Chapter 2, we present how Piwi in the nucleus co-transcriptionally targets genomic loci expressing TE sequences to direct the deposition of repressive chromatin marks. Chapter 3 examines the cytoplasmic function of the piRNA pathway, where we find that the protein Krimper coordinates Aub and Ago3 in the piRNA ping-pong pathway to adaptively target and destroy TE transcripts. Chapter 4 explores how interactions of Piwis with associated proteins are modulated by arginine methylation modifications. Lastly, in Chapter 5 I present evidence that the cytoplasmic branch of the piRNA pathway can potentially ‘cross-talk’ with the nuclear branch to transfer sequence information to better target and co-transcriptionally silence the genomic loci coding active TE sequences. Overall, the work presented in this thesis constitutes a part of the first steps in understanding the molecular mechanisms that protect germ cells from invasion by TE sequences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we wanted to study the mechanism of E2F2-mediated repression. Our hypothesis is that E2F2 activates the expression of one or more E2F members of the “repressor” subset of the family through the E2F motifs present in their promoters, and those repressor E2F(s) would subsequently repress the target promoters. To address this hypothesis, we focused on E2F7. E2F7 is a repressor that lacks the Rb binding domain, and associates with DNA through E2F binding sites (de Bruin et al., 2003). Furthermore, E2F7 itself is also regulated by E2F motifs on its own promoter, and it has been shown to repress DNA metabolism and replication genes in late S-phase (de Bruin et al., 2003; Westendorp et al., 2012). E2F7, together with E2F8 has been found to form heterodimers, being critical on cell proliferation and development, and both seem to have similar functions (Li et al., 2008). Preliminary results from Zubiaga’s group have indicated that E2F2 activates E2F7 transcription in U2OS cells, suggesting that E2F2’s repressor function could be mediated by E2F7. For this purpose, we focused on studying E2F7’s role on the target genes previously known to be repressed by E2F2: Chk1 and Mcm5. The specific aims for this work were the following: - Confirm that E2F2 induces E2F7 in HEK-293T cells - Assess whether E2F7 acts as a transcriptional repressor on E2F sites - Evaluate the role of E2F7 on E2F2-mediated transcriptional repression of Chk1 and Mcm5.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Superimposed on the activation of the embryonic genome in the preimplantation mouse embryo is the formation of a transcriptionally repressive state during the two-cell stage. This repression appears mediated at the level of chromatin structure, because it is reversed by inducing histone hyperacetylation or inhibiting the second round of DNA replication. We report that of more than 200 amplicons analyzed by mRNA differential display, about 45% of them are repressed between the two-cell and four-cell stages. This repression is scored as either a decrease in amplicon expression that occurs between the two-cell and four-cell stages or on the ability of either trichostatin A tan inhibitor of histone deacetylases) or aphidicolin tan inhibitor of replicative DNA polymerases) to increase the level of amplicon expression. Results of this study also indicate that about 16% of the amplicons analyzed likely are novel genes whose sequence doesn't correspond to sequences in the current databases, whereas about 20% of the sequences expressed during this transition likely are repetitive sequences. Lastly, inducing histone hyperacetylation in the two-cell embryos inhibits cleavage to the four-cell stage. These results suggest that genome activation is global and relatively promiscuous and that a function of the transcriptionally repressive state is to dictate the appropriate profile of gene expression that is compatible with further development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ptsH gene, encoding the phosphotransferase protein HPr, from Clostridium acetobutylicum ATCC 824 was identified from the genome sequence, cloned and shown to complement a ptsH mutant of Escherichia coli. The deduced protein sequence shares significant homology with HPr proteins from other low-GC gram-positive bacteria, although the highly conserved sequence surrounding the Ser-46 phosphorylation site is not well preserved in the clostridial protein. Nevertheless, the HPr was phosphorylated in an ATP-dependent manner in cell-free extracts of C. acetobutylicum. Furthermore, purified His-tagged HPr from Bacillus subtilis was also a substrate for the clostridial HPr kinase/phosphorylase. This phosphorylation reaction is a key step in the mechanism of carbon catabolite repression proposed to operate in B. subtilis and other low-GC gram-positive bacteria. Putative genes encoding the HPr kinase/phosphorylase and the other element of this model, namely the catabolite control protein CcpA, were identified from the C. acetobutylicum genome sequence, suggesting that a similar mechanism of carbon catabolite repression may operate in this industrially important organism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite an emerging understanding of the genetic alterations giving rise to various tumors, the mechanisms whereby most oncogenes are overexpressed remain unclear. Here we have utilized an integrated approach of genomewide regulatory element mapping via DNase-seq followed by conventional reporter assays and transcription factor binding site discovery to characterize the transcriptional regulation of the medulloblastoma oncogene Orthodenticle Homeobox 2 (OTX2). Through these studies we have revealed that OTX2 is differentially regulated in medulloblastoma at the level of chromatin accessibility, which is in part mediated by DNA methylation. In cell lines exhibiting chromatin accessibility of OTX2 regulatory regions, we found that autoregulation maintains OTX2 expression. Comparison of medulloblastoma regulatory elements with those of the developing brain reveals that these tumors engage a developmental regulatory program to drive OTX2 transcription. Finally, we have identified a transcriptional regulatory element mediating retinoid-induced OTX2 repression in these tumors. This work characterizes for the first time the mechanisms of OTX2 overexpression in medulloblastoma. Furthermore, this study establishes proof of principle for applying ENCODE datasets towards the characterization of upstream trans-acting factors mediating expression of individual genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The final step of the transduction pathway is the activation of gene transcription, which is driven by kinase cascades leading to changes in the activity of many transcription factors. Among these latter, PEA3/E1AF, ER81/ETV1, and ERM, members of the well conserved PEA3 group from the Ets family are involved in these processes. We show here that protein kinase A (PKA) increases the transcriptional activity of human ERM and human ETV1, through a Ser residue situated at the edge of the ETS DNA-binding domain. PKA phosphorylation does not directly affect the ERM transactivation domains but does affect DNA binding activity. Unphosphorylated wild-type ERM bound DNA avidly, whereas after PKA phosphorylation it did so very weakly. Interestingly, S367A mutation significantly reduced the ERM-mediated transcription in the presence of the kinase, and the DNA binding of this mutant, although similar to that of unphosphorylated wild-type protein, was insensitive to PKA treatment. Mutations, which may mimic a phosphorylated serine, converted ERM from an efficient DNA-binding protein to a poor DNA binding one, with inefficiency of PKA phosphorylation. The present data clearly demonstrate a close correlation between the capacity of PKA to increase the transactivation of ERM and the drastic down-regulation of the binding of the ETS domain to the targeted DNA. What we thus demonstrate here is a relatively rare transcription activation mechanism through a decrease in DNA binding, probably by the shift of a non-active form of an Ets protein to a PKA-phosphorylated active one, which should be in a conformation permitting a transactivation domain to be active.