949 resultados para Renewable diesels


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Biofuels and their blends with fossil fuel are important energy resources, whose production and application have been largely increased internationally. This study focuses on the evaluation of the activation energy of the thermal decomposition of three pure fuels: farnesane (renewable diesel from sugar cane), biodiesel and fossil diesel and their blends (20% farnesene and 80% of fossil diesel - 20F80D and 20% farnesane, 50% fossil diesel and 30% biodiesel - 20F50D30B). Activation energy has been determined from thermogravimetry and Model-Free Kinetics. Results showed that not only the cetane number is important to understand the behavior of the fuels regarding ignition delay, but also the profile of the activation energy versus conversion curves shows that the chemical reactions are responsible for the performance at the beginning of the process. In addition, activation energy seemed to be suitable in describing reactivity in the case of blends of renewable and fossil fuels. © 2013 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the work, the in vitro antiproliferative activity of a series of synthetic fatty acid amides were investigated in seven cancer cell lines. The study revealed that most of the compounds showed antiproliferative activity against tested tumor cell lines, mainly on human glioma cells (U251) and human ovarian cancer cells with a multiple drug-resistant phenotype (NCI-ADR/RES). In addition, the fatty methyl benzylamide derived from ricinoleic acid (with the fatty acid obtained from castor oil, a renewable resource) showed a high selectivity with potent growth inhibition and cell death for the glioma cell line-the most aggressive CNS cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biomass Refinery is a sequential of eleven thermochemical processes and one biological process with two initial basic treatments: prehydrolysis for lignocellulosics and low temperature conversion for biomass with medium-to-high content of lipids and proteins. The other ten processes are: effluent treatment plant, furfural plant, biodiesel plant, cellulignin dryer, calcination, fluidized bed boiler, authotermal reforming of cellulignin for syngas production, combined cycle of two-stroke low-speed engine or syngas turbine with fluidized bed boiler heat recovery, GTL technologies and ethanol from cellulose, prehydrolysate and syngas. Any kind of biomass such as wood, agricultural residues, municipal solid waste, seeds, cakes, sludges, excrements and used tires can be processed at the Biomass Refinery. Twelve basic products are generated such as cellulignin, animal feed, electric energy, fuels (ethanol, crude oil, biodiesel, char), petrochemical substitutes, some materials (ash, gypsum, fertilizers, silica, carbon black) and hydrogen. The technology is clean with recovery of energy and reuse of water, acid and effluents. Based on a holistic integration of various disciplines Biomass Refinery maximizes the simultaneous production of food, electric energy, liquid fuels and chemical products and some materials, achieving a competitive position with conventional and fossil fuel technologies, as well as payment capacity for biomass production. Biomass Refinery has a technical economical capability to complement the depletion of the conventional petroleum sources and to capture its GHGs resulting a biomass + petroleum ""green"" combination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of renewable energy sources and Distributed Generation (DG) of electricity is of main importance in the way towards a sustainable development. However, the management, in large scale, of these technologies is complicated because of the intermittency of primary resources (wind, sunshine, etc.) and small scale of some plants. The aggregation of DG plants gives place to a new concept: the Virtual Power Producer (VPP). VPPs can reinforce the importance of these generation technologies making them valuable in electricity markets. VPPs can ensure a secure, environmentally friendly generation and optimal management of heat, electricity and cold as well as optimal operation and maintenance of electrical equipment, including the sale of electricity in the energy market. For attaining these goals, there are important issues to deal with, such as reserve management strategies, strategies for bids formulation, the producers’ remuneration, and the producers’ characterization for coalition formation. This chapter presents the most important concepts related with renewable-based generation integration in electricity markets, using VPP paradigm. The presented case studies make use of two main computer applications:ViProd and MASCEM. ViProd simulates VPP operation, including the management of plants in operation. MASCEM is a multi-agent based electricity market simulator that supports the inclusion of VPPs in the players set.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sustainable development concerns made renewable energy sources to be increasingly used for electricity distributed generation. However, this is mainly due to incentives or mandatory targets determined by energy policies as in European Union. Assuring a sustainable future requires distributed generation to be able to participate in competitive electricity markets. To get more negotiation power in the market and to get advantages of scale economy, distributed generators can be aggregated giving place to a new concept: the Virtual Power Producer (VPP). VPPs are multi-technology and multisite heterogeneous entities that should adopt organization and management methodologies so that they can make distributed generation a really profitable activity, able to participate in the market. This paper presents ViProd, a simulation tool that allows simulating VPPs operation, in the context of MASCEM, a multi-agent based eletricity market simulator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the energy management of the isolated operation of small power system, the economic scheduling of the generation units is a crucial problem. Applying right timing can maximize the performance of the supply. The optimal operation of a wind turbine, a solar unit, a fuel cell and a storage battery is searched by a mixed-integer linear programming implemented in General Algebraic Modeling Systems (GAMS). A Virtual Power Producer (VPP) can optimal operate the generation units, assured the good functioning of equipment, including the maintenance, operation cost and the generation measurement and control. A central control at system allows a VPP to manage the optimal generation and their load control. The application of methodology to a real case study in Budapest Tech, demonstrates the effectiveness of this method to solve the optimal isolated dispatch of the DC micro-grid renewable energy park. The problem has been converged in 0.09 s and 30 iterations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The management of energy resources for islanded operation is of crucial importance for the successful use of renewable energy sources. A Virtual Power Producer (VPP) can optimally operate the resources taking into account the maintenance, operation and load control considering all the involved cost. This paper presents the methodology approach to formulate and solve the problem of determining the optimal resource allocation applied to a real case study in Budapest Tech’s. The problem is formulated as a mixed-integer linear programming model (MILP) and solved by a deterministic optimization technique CPLEX-based implemented in General Algebraic Modeling Systems (GAMS). The problem has also been solved by Evolutionary Particle Swarm Optimization (EPSO). The obtained results are presented and compared.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Avança dados das perspetivas de diferentes gerações sobre questões ambientais e consumo energético.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Renewable energy sources (RES) have unique characteristics that grant them preference in energy and environmental policies. However, considering that the renewable resources are barely controllable and sometimes unpredictable, some challenges are faced when integrating high shares of renewable sources in power systems. In order to mitigate this problem, this paper presents a decision-making methodology regarding renewable investments. The model computes the optimal renewable generation mix from different available technologies (hydro, wind and photovoltaic) that integrates a given share of renewable sources, minimizing residual demand variability, therefore stabilizing the thermal power generation. The model also includes a spatial optimization of wind farms in order to identify the best distribution of wind capacity. This methodology is applied to the Portuguese power system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this article is to analyse and evaluate the economical, energetic and environmental impacts of the increasing penetration of renewable energies and electrical vehicles in isolated systems, such as Terceira Island in Azores and Madeira Island. Given the fact that the islands are extremely dependent on the importation of fossil fuels - not only for the production of energy, but also for the transportation’s sector – it’s intended to analyse how it is possible to reduce that dependency and determine the resultant reduction of pollutant gas emissions. Different settings have been analysed - with and without the penetration of EVs. The Terceira Island is an interesting case study, where EVs charging during off-peak hours could allow an increase in geothermal power, limited by the valley of power demand. The percentage of renewable energy in the electric power mix could reach the 74% in 2030 while at the same time, it is possible to reduce the emissions of pollutant gases in 45% and the purchase of fossil fuels in 44%. In Madeira, apart from wind, solar and small hydro power, there are not so many endogenous resources and the Island’s emission factor cannot be so reduced as in Terceira. Although, it is possible to reduce fossil fuels imports and emissions in 1.8% in 2030 when compared with a BAU scenario with a 14% of the LD fleet composed by EVs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this article is to analyse and evaluate the economical, energetic and environmental impacts of the increasing penetration of renewable energies and electrical vehicles in isolated systems, such as Terceira Island in Azores and Madeira Island. Given the fact that the islands are extremely dependent on the importation of fossil fuels - not only for the production of energy, but also for the transportation’s sector – it’s intended to analyse how it is possible to reduce that dependency and determine the resultant reduction of pollutant gas emissions. Different settings have been analysed - with and without the penetration of EVs. The Terceira Island is an interesting case study, where EVs charging during off-peak hours could allow an increase in geothermal power, limited by the valley of power demand. The percentage of renewable energy in the electric power mix could reach the 74% in 2030 while at the same time, it is possible to reduce the emissions of pollutant gases in 45% and the purchase of fossil fuels in 44%. In Madeira, apart from wind, solar and small hydro power, there are not so many endogenous resources and the Island’s emission factor cannot be so reduced as in Terceira. Although, it is possible to reduce fossil fuels imports and emissions in 1.8% in 2030 when compared with a BAU scenario with a 14% of the LD fleet composed by EVs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Of all of the sources of renewable energies available one can argue that the most abundant and accessible are solar power, radiation, and the energy of the tides (70 % of the earth surface is covered by water). The tidal wave energy hasn’t seen a widespread distribution yet, mainly due to the lack of interest of the governments, most of the coastal areas of the world are exclusive responsibility of the governments, thus not easily open for private venture. Considering solar power, there exist two main fields of application, land based systems and space based systems. The former systems are still in a very embryonic phase, with Japan being the lead researcher in the field, with an experimental satellite-power station to be launched before 2010. Land based systems, on the other hand, are well studied, with major research and application programs in all known forms of solar power production. Given a minimum value of incident radiation, and applying the appropriate system, (i.e. power plant type), for any given area the solar power becomes an income-producing industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Renewable energy sources (RES) have unique characteristics that grant them preference in energy and environmental policies. However, considering that the renewable resources are barely controllable and sometimes unpredictable, some challenges are faced when integrating high shares of renewable sources in power systems. In order to mitigate this problem, this paper presents a decision-making methodology regarding renewable investments. The model computes the optimal renewable generation mix from different available technologies (hydro, wind and photovoltaic) that integrates a given share of renewable sources, minimizing residual demand variability, therefore stabilizing the thermal power generation. The model also includes a spatial optimization of wind farms in order to identify the best distribution of wind capacity. This methodology is applied to the Portuguese power system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work is discussed the importance of the renewable production forecast in an island environment. A probabilistic forecast based on kernel density estimators is proposed. The aggregation of these forecasts, allows the determination of thermal generation amount needed to schedule and operating a power grid of an island with high penetration of renewable generation. A case study based on electric system of S. Miguel Island is presented. The results show that the forecast techniques are an imperative tool help the grid management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a genetic algorithm-based approach for project scheduling with multi-modes and renewable resources. In this problem activities of the project may be executed in more than one operating mode and renewable resource constraints are imposed. The objective function is the minimization of the project completion time. The idea of this approach is integrating a genetic algorithm with a schedule generation scheme. This study also proposes applying a local search procedure trying to yield a better solution when the genetic algorithm and the schedule generation scheme obtain a solution. The experimental results show that this algorithm is an effective method for solving this problem.