993 resultados para Relativistic harmonic oscillators


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We compute the analytical solutions of the generalized relativistic harmonic oscillator in 1+1 dimensions, including a linear pseudoscalar potential and quadratic scalar and vector potentials which have equal or opposite signs These are the conditions in which pseudospin or spin symmetries can be realized We consider positive and negative quadratic potentials and present their bound-state solutions for fermions and an-tifermions. We relate the spin-type and pseudospin-type spectra through charge conjugation and γ5 chiral transformations. Finally, we establish a relation of the solutions found with single-particle states of nuclei described by relativistic mean-field theories with tensor interactions and discuss the conditions in which one may have both nucleon and antin-ucleon bound states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study second-order properties of linear oscillators driven by exponentially correlated noise. We focus our attention on dynamical exponents and crossovers and also on resonance phenomena that appear when the driving noise is dichotomous. We also obtain the power spectrum and show its different behaviors according to the color of the noise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we extend the results presented in (de Ponte, Mizrahi and Moussa 2007 Phys. Rev. A 76 032101) to treat quantitatively the effects of reservoirs at finite temperature in a bosonic dissipative network: a chain of coupled harmonic oscillators whatever its topology, i.e., whichever the way the oscillators are coupled together, the strength of their couplings and their natural frequencies. Starting with the case where distinct reservoirs are considered, each one coupled to a corresponding oscillator, we also analyze the case where a common reservoir is assigned to the whole network. Master equations are derived for both situations and both regimes of weak and strong coupling strengths between the network oscillators. Solutions of these master equations are presented through the normal ordered characteristic function. These solutions are shown to be significantly involved when temperature effects are considered, making difficult the analysis of collective decoherence and dispersion in dissipative bosonic networks. To circumvent these difficulties, we turn to the Wigner distribution function which enables us to present a technique to estimate the decoherence time of network states. Our technique proceeds by computing separately the effects of dispersion and the attenuation of the interference terms of the Wigner function. A detailed analysis of the dispersion mechanism is also presented through the evolution of the Wigner function. The interesting collective dispersion effects are discussed and applied to the analysis of decoherence of a class of network states. Finally, the entropy and the entanglement of a pure bipartite system are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We solve the generalized relativistic harmonic oscillator in 1+1 dimensions, i.e., including a linear pseudoscalar potential and quadratic scalar and vector potentials which have equal or opposite signs. We consider positive and negative quadratic potentials and discuss in detail their bound-state solutions for fermions and antifermions. The main features of these bound states are the same as the ones of the generalized three-dimensional relativistic harmonic oscillator bound states. The solutions found for zero pseudoscalar potential are related to the spin and pseudospin symmetry of the Dirac equation in 3+1 dimensions. We show how the charge conjugation and gamma(5) chiral transformations relate the several spectra obtained and find that for massless particles the spin and pseudospin symmetry-related problems have the same spectrum but different spinor solutions. Finally, we establish a relation of the solutions found with single-particle states of nuclei described by relativistic mean-field theories with scalar, vector, and isoscalar tensor interactions and discuss the conditions in which one may have both nucleon and antinucleon bound states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that relativistic mean fields theories with scalar S, and vector V, quadratic radial potentials can generate a harmonic oscillator with exact pseudospin symmetry and positive energy bound states when S = -V. The eigenenergies are quite different from those of the non-relativistic harmonic oscillator. We also discuss a mechanism for perturbatively breaking this, symmetry by introducing a tensor potential. Our results shed light into the intrinsic relativistic nature of the pseudospin symmetry, which might be important in high density systems such as neutron stars.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The exact propagator beyond and at caustics for a pair of coupled and driven oscillators with different frequencies and masses is calculated using the path-integral approach. The exact wavefunctions and energies are also presented. Finally the propagator is re-calculated through an alternative method, using the δfunction. © 1992 IOP Publishing Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A generalized relativistic harmonic oscillator for spin 1/2 particles is studied. The Dirac Hamiltonian contains a scalar S and a vector V quadratic potentials in the radial coordinate, as well as a tensor potential U linear in r. Setting either or both combinations Σ=5+V and δ=V-S to zero, analytical solutions for bound states of the corresponding Dirac equations are found. The eigenenergies and wave functions are presented and particular cases are discussed, devoting a special attention to the nonrelativistic limit and the case Σ=0, for which pseudospin symmetry is exact. We also show that the case U=δ=0 is the most natural generalization of the nonrelativistic harmonic oscillator. The radial node structure of the Dirac spinor is studied for several combinations of harmonic-oscillator potentials, and that study allows us to explain why nuclear intruder levels cannot be described in the framework of the relativistic harmonic oscillator in the pseudospin limit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nuclear dependence of the neutron-proton mass difference is examined in a relativistic harmonic quark model with the assumption of a swelling of the individual nucleon originated by a decrease of the spring constant inside the nuclear medium. A decrease of the neutron-proton mass difference is obtained which is reasonably small and in the right direction to cope with the Nollen-Schiffer anomaly in mirror nuclei. © 1992 Società Italiana di Fisica.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the Von Neumann and Renyi entanglement entropy of long-range harmonic oscillators (LRHO) by both theoretical and numerical means. We show that the entanglement entropy in massless harmonic oscillators increases logarithmically with the sub-system size as S - c(eff)/3 log l. Although the entanglement entropy of LRHO's shares some similarities with the entanglement entropy at conformal critical points we show that the Renyi entanglement entropy presents some deviations from the expected conformal behaviour. In the massive case we demonstrate that the behaviour of the entanglement entropy with respect to the correlation length is also logarithmic as the short-range case. Copyright (c) EPLA, 2012

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This is a set of P. Chem. problems posed at slightly higher than the normal text book level, for students who are continuing in the study of this subject.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Una detallada descripción de la dinámica de bajas energías del entrelazamiento multipartito es proporcionada para sistemas armónicos en una gran variedad de escenarios disipativos. Sin hacer ninguna aproximación central, esta descripción yace principalmente sobre un conjunto razonable de hipótesis acerca del entorno e interacción entorno-sistema, ambas consistente con un análisis lineal de la dinámica disipativa. En la primera parte se deriva un criterio de inseparabilidad capaz de detectar el entrelazamiento k-partito de una extensa clase de estados gausianos y no-gausianos en sistemas de variable continua. Este criterio se emplea para monitorizar la dinámica transitiva del entrelazamiento, mostrando que los estados no-gausianos pueden ser tan robustos frente a los efectos disipativos como los gausianos. Especial atención se dedicada a la dinámica estacionaria del entrelazamiento entre tres osciladores interaccionando con el mismo entorno o diferentes entornos a distintas temperaturas. Este estudio contribuye a dilucidar el papel de las correlaciones cuánticas en el comportamiento de la corrientes energéticas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study carried out in this thesis is devoted to spectral analysis of systems of PDEs related also with quantum physics models. Namely, the research deals with classes of systems that contain certain quantum optics models such as Jaynes-Cummings, Rabi and their generalizations that describe light-matter interaction. First we investigate the spectral Weyl asymptotics for a class of semiregular systems, extending to the vector-valued case results of Helffer and Robert, and more recently of Doll, Gannot and Wunsch. Actually, the asymptotics by Doll, Gannot and Wunsch is more precise (that is why we call it refined) than the classical result by Helffer and Robert, but deals with a less general class of systems, since the authors make an hypothesis on the measure of the subset of the unit sphere on which the tangential derivatives of the X-Ray transform of the semiprincipal symbol vanish to infinity order. Abstract Next, we give a meromorphic continuation of the spectral zeta function for semiregular differential systems with polynomial coefficients, generalizing the results by Ichinose and Wakayama and Parmeggiani. Finally, we state and prove a quasi-clustering result for a class of systems including the aforementioned quantum optics models and we conclude the thesis by showing a Weyl law result for the Rabi model and its generalizations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The fractional generalized Langevin equation (FGLE) is proposed to discuss the anomalous diffusive behavior of a harmonic oscillator driven by a two-parameter Mittag-Leffler noise. The solution of this FGLE is discussed by means of the Laplace transform methodology and the kernels are presented in terms of the three-parameter Mittag-Leffler functions. Recent results associated with a generalized Langevin equation are recovered.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A perturbative study of a class of nonsingular spiked harmonic oscillators defined by the Hamiltonian H= -d2/dr2 + r2 + λ/rα in the domain [0,∞] is carried out, in the two extremes of a weak coupling and a strong coupling regimes. A path has been found to connect both expansions for α near 2. © 1991 American Institute of Physics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The three-dimensional three-body problem with non-equal masses interacting through pairwise harmonic forces of non-equal strengths is analysed. It is shown that the Jacobi coordinates per se do not decouple this problem but lead to the problem of two coupled three-dimensional harmonic oscillators which becomes exactly soluble through the use of an additional coordinate set.