On anomalous diffusion and the fractional generalized Langevin equation for a harmonic oscillator
| Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
|---|---|
| Data(s) |
20/05/2014
20/05/2014
01/12/2009
|
| Resumo |
The fractional generalized Langevin equation (FGLE) is proposed to discuss the anomalous diffusive behavior of a harmonic oscillator driven by a two-parameter Mittag-Leffler noise. The solution of this FGLE is discussed by means of the Laplace transform methodology and the kernels are presented in terms of the three-parameter Mittag-Leffler functions. Recent results associated with a generalized Langevin equation are recovered. |
| Formato |
13 |
| Identificador |
http://dx.doi.org/10.1063/1.3269587 Journal of Mathematical Physics. Melville: Amer Inst Physics, v. 50, n. 12, p. 13, 2009. 0022-2488 http://hdl.handle.net/11449/8610 10.1063/1.3269587 WOS:000273223900043 WOS000273223900043.pdf |
| Idioma(s) |
eng |
| Publicador |
American Institute of Physics (AIP) |
| Relação |
Journal of Mathematical Physics |
| Direitos |
closedAccess |
| Palavras-Chave | #diffusion #harmonic oscillators #Laplace transforms |
| Tipo |
info:eu-repo/semantics/article |