Entanglement entropy in long-range harmonic oscillators


Autoria(s): Nezhadhaghighi, M. Ghasemi; Rajabpour, M. A.
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

07/11/2013

07/11/2013

2012

Resumo

We study the Von Neumann and Renyi entanglement entropy of long-range harmonic oscillators (LRHO) by both theoretical and numerical means. We show that the entanglement entropy in massless harmonic oscillators increases logarithmically with the sub-system size as S - c(eff)/3 log l. Although the entanglement entropy of LRHO's shares some similarities with the entanglement entropy at conformal critical points we show that the Renyi entanglement entropy presents some deviations from the expected conformal behaviour. In the massive case we demonstrate that the behaviour of the entanglement entropy with respect to the correlation length is also logarithmic as the short-range case. Copyright (c) EPLA, 2012

INFN

FAPESP

Identificador

EPL, MULHOUSE, v. 100, n. 6, pp. 64-69, DEC, 2012

0295-5075

http://www.producao.usp.br/handle/BDPI/42907

10.1209/0295-5075/100/60011

http://dx.doi.org/10.1209/0295-5075/100/60011

Idioma(s)

eng

Publicador

EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY

MULHOUSE

Relação

EPL

Direitos

restrictedAccess

Copyright EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY

Palavras-Chave #AREA #PHYSICS, MULTIDISCIPLINARY
Tipo

article

original article

publishedVersion