Entanglement entropy in long-range harmonic oscillators
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
07/11/2013
07/11/2013
2012
|
Resumo |
We study the Von Neumann and Renyi entanglement entropy of long-range harmonic oscillators (LRHO) by both theoretical and numerical means. We show that the entanglement entropy in massless harmonic oscillators increases logarithmically with the sub-system size as S - c(eff)/3 log l. Although the entanglement entropy of LRHO's shares some similarities with the entanglement entropy at conformal critical points we show that the Renyi entanglement entropy presents some deviations from the expected conformal behaviour. In the massive case we demonstrate that the behaviour of the entanglement entropy with respect to the correlation length is also logarithmic as the short-range case. Copyright (c) EPLA, 2012 INFN FAPESP |
Identificador |
EPL, MULHOUSE, v. 100, n. 6, pp. 64-69, DEC, 2012 0295-5075 http://www.producao.usp.br/handle/BDPI/42907 10.1209/0295-5075/100/60011 |
Idioma(s) |
eng |
Publicador |
EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY MULHOUSE |
Relação |
EPL |
Direitos |
restrictedAccess Copyright EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY |
Palavras-Chave | #AREA #PHYSICS, MULTIDISCIPLINARY |
Tipo |
article original article publishedVersion |