985 resultados para Relational Data Bases
Resumo:
The assessment of medical technologies has to answer several questions ranging from safety and effectiveness to complex economical, social, and health policy issues. The type of data needed to carry out such evaluation depends on the specific questions to be answered, as well as on the stage of development of a technology. Basically two types of data may be distinguished: (a) general demographic, administrative, or financial data which has been collected not specifically for technology assessment; (b) the data collected with respect either to a specific technology or to a disease or medical problem. On the basis of a pilot inquiry in Europe and bibliographic research, the following categories of type (b) data bases have been identified: registries, clinical data bases, banks of factual and bibliographic knowledge, and expert systems. Examples of each category are discussed briefly. The following aims for further research and practical goals are proposed: criteria for the minimal data set required, improvement to the registries and clinical data banks, and development of an international clearinghouse to enhance information diffusion on both existing data bases and available reports on medical technology assessments.
Resumo:
El que es vol, en aquest projecte, és generar una sèrie d'eines que permetin a una entitat externa d'interactuar en una base de dades relacional sense necessitat de coneixements específics sobre bases de dades. Quan es diu interactuar, s'hi inclou des de la creació de la base de dades fins a la consulta de la informació, passant per l'actualització d'aquesta base de dades.
Resumo:
En aquest projecte, amb la finalitat d'analitzar per mitjà d'un exemple (la base de dades d'una botiga que opera en línia) algunes de les possibilitats que dóna XML, s'ha construït un sistema que permet generar bases de dades relacionals (amb SQL) a partir de diagrames de classes definits en XML. D?aquesta manera es mostra la flexibilitat que aporta XML a la definició, el processament i la transformació dels documents.
Resumo:
El plantejament inicial d'aquest projecte és el de aconseguir obtenir l'esquema conceptual originari de qualsevol base de dades relacional per a fer tasques de reenginyeria. Es pretén, a més, dotar al diagrama ER a obtenir d'extensions emprant llenguatge de definició de restriccions (OCL), per la qual cosa emprarem les llibreries de funcions Dresden OCL.
Resumo:
Our purpose is to provide a set-theoretical frame to clustering fuzzy relational data basically based on cardinality of the fuzzy subsets that represent objects and their complementaries, without applying any crisp property. From this perspective we define a family of fuzzy similarity indexes which includes a set of fuzzy indexes introduced by Tolias et al, and we analyze under which conditions it is defined a fuzzy proximity relation. Following an original idea due to S. Miyamoto we evaluate the similarity between objects and features by means the same mathematical procedure. Joining these concepts and methods we establish an algorithm to clustering fuzzy relational data. Finally, we present an example to make clear all the process
Resumo:
The main objective of this paper aims at developing a methodology that takes into account the human factor extracted from the data base used by the recommender systems, and which allow to resolve the specific problems of prediction and recommendation. In this work, we propose to extract the user's human values scale from the data base of the users, to improve their suitability in open environments, such as the recommender systems. For this purpose, the methodology is applied with the data of the user after interacting with the system. The methodology is exemplified with a case study
Resumo:
The main objective of this paper aims at developing a methodology that takes into account the human factor extracted from the data base used by the recommender systems, and which allow to resolve the specific problems of prediction and recommendation. In this work, we propose to extract the user's human values scale from the data base of the users, to improve their suitability in open environments, such as the recommender systems. For this purpose, the methodology is applied with the data of the user after interacting with the system. The methodology is exemplified with a case study
Resumo:
Our purpose is to provide a set-theoretical frame to clustering fuzzy relational data basically based on cardinality of the fuzzy subsets that represent objects and their complementaries, without applying any crisp property. From this perspective we define a family of fuzzy similarity indexes which includes a set of fuzzy indexes introduced by Tolias et al, and we analyze under which conditions it is defined a fuzzy proximity relation. Following an original idea due to S. Miyamoto we evaluate the similarity between objects and features by means the same mathematical procedure. Joining these concepts and methods we establish an algorithm to clustering fuzzy relational data. Finally, we present an example to make clear all the process
Resumo:
This paper is concerned with the computational efficiency of fuzzy clustering algorithms when the data set to be clustered is described by a proximity matrix only (relational data) and the number of clusters must be automatically estimated from such data. A fuzzy variant of an evolutionary algorithm for relational clustering is derived and compared against two systematic (pseudo-exhaustive) approaches that can also be used to automatically estimate the number of fuzzy clusters in relational data. An extensive collection of experiments involving 18 artificial and two real data sets is reported and analyzed. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
La evaluacion de las bases de datos CARBIB y CARCAT cubre areas tales como: formatos de intercambio, compatibilidad, cobertura tematica y geografica, tipo de documento a ingresar en relacion con su origen; y valor potencial para la region.
Resumo:
The present paper introduces a new model of fuzzy neuron, one which increases the computational power of the artificial neuron, turning it also into a symbolic processing device. This model proposes the synapsis to be symbolically and numerically defined, by means of the assignment of tokens to the presynaptic and postsynaptic neurons. The matching or concatenation compatibility between these tokens is used to decided about the possible connections among neurons of a given net. The strength of the compatible synapsis is made dependent on the amount of the available presynaptic and post synaptic tokens. The symbolic and numeric processing capacity of the new fuzzy neuron is used here to build a neural net (JARGON) to disclose the existing knowledge in natural language data bases such as medical files, set of interviews, and reports about engineering operations.
Resumo:
Background: Once multi-relational approach has emerged as an alternative for analyzing structured data such as relational databases, since they allow applying data mining in multiple tables directly, thus avoiding expensive joining operations and semantic losses, this work proposes an algorithm with multi-relational approach. Methods: Aiming to compare traditional approach performance and multi-relational for mining association rules, this paper discusses an empirical study between PatriciaMine - an traditional algorithm - and its corresponding multi-relational proposed, MR-Radix. Results: This work showed advantages of the multi-relational approach in performance over several tables, which avoids the high cost for joining operations from multiple tables and semantic losses. The performance provided by the algorithm MR-Radix shows faster than PatriciaMine, despite handling complex multi-relational patterns. The utilized memory indicates a more conservative growth curve for MR-Radix than PatriciaMine, which shows the increase in demand of frequent items in MR-Radix does not result in a significant growth of utilized memory like in PatriciaMine. Conclusion: The comparative study between PatriciaMine and MR-Radix confirmed efficacy of the multi-relational approach in data mining process both in terms of execution time and in relation to memory usage. Besides that, the multi-relational proposed algorithm, unlike other algorithms of this approach, is efficient for use in large relational databases.
Resumo:
Abstract Background Once multi-relational approach has emerged as an alternative for analyzing structured data such as relational databases, since they allow applying data mining in multiple tables directly, thus avoiding expensive joining operations and semantic losses, this work proposes an algorithm with multi-relational approach. Methods Aiming to compare traditional approach performance and multi-relational for mining association rules, this paper discusses an empirical study between PatriciaMine - an traditional algorithm - and its corresponding multi-relational proposed, MR-Radix. Results This work showed advantages of the multi-relational approach in performance over several tables, which avoids the high cost for joining operations from multiple tables and semantic losses. The performance provided by the algorithm MR-Radix shows faster than PatriciaMine, despite handling complex multi-relational patterns. The utilized memory indicates a more conservative growth curve for MR-Radix than PatriciaMine, which shows the increase in demand of frequent items in MR-Radix does not result in a significant growth of utilized memory like in PatriciaMine. Conclusion The comparative study between PatriciaMine and MR-Radix confirmed efficacy of the multi-relational approach in data mining process both in terms of execution time and in relation to memory usage. Besides that, the multi-relational proposed algorithm, unlike other algorithms of this approach, is efficient for use in large relational databases.
Resumo:
People often use tools to search for information. In order to improve the quality of an information search, it is important to understand how internal information, which is stored in user’s mind, and external information, represented by the interface of tools interact with each other. How information is distributed between internal and external representations significantly affects information search performance. However, few studies have examined the relationship between types of interface and types of search task in the context of information search. For a distributed information search task, how data are distributed, represented, and formatted significantly affects the user search performance in terms of response time and accuracy. Guided by UFuRT (User, Function, Representation, Task), a human-centered process, I propose a search model, task taxonomy. The model defines its relationship with other existing information models. The taxonomy clarifies the legitimate operations for each type of search task of relation data. Based on the model and taxonomy, I have also developed prototypes of interface for the search tasks of relational data. These prototypes were used for experiments. The experiments described in this study are of a within-subject design with a sample of 24 participants recruited from the graduate schools located in the Texas Medical Center. Participants performed one-dimensional nominal search tasks over nominal, ordinal, and ratio displays, and searched one-dimensional nominal, ordinal, interval, and ratio tasks over table and graph displays. Participants also performed the same task and display combination for twodimensional searches. Distributed cognition theory has been adopted as a theoretical framework for analyzing and predicting the search performance of relational data. It has been shown that the representation dimensions and data scales, as well as the search task types, are main factors in determining search efficiency and effectiveness. In particular, the more external representations used, the better search task performance, and the results suggest the ideal search performance occurs when the question type and corresponding data scale representation match. The implications of the study lie in contributing to the effective design of search interface for relational data, especially laboratory results, which are often used in healthcare activities.
Resumo:
Molecular and fragment ion data of intact 8- to 43-kDa proteins from electrospray Fourier-transform tandem mass spectrometry are matched against the corresponding data in sequence data bases. Extending the sequence tag concept of Mann and Wilm for matching peptides, a partial amino acid sequence in the unknown is first identified from the mass differences of a series of fragment ions, and the mass position of this sequence is defined from molecular weight and the fragment ion masses. For three studied proteins, a single sequence tag retrieved only the correct protein from the data base; a fourth protein required the input of two sequence tags. However, three of the data base proteins differed by having an extra methionine or by missing an acetyl or heme substitution. The positions of these modifications in the protein examined were greatly restricted by the mass differences of its molecular and fragment ions versus those of the data base. To characterize the primary structure of an unknown represented in the data base, this method is fast and specific and does not require prior enzymatic or chemical degradation.