975 resultados para Real samples


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Schiff base compounds refer to the branch of supra-molecules and can be used as sensing material in the construction of potentiometric ion selective electrodes (ISEs). This relatively modern field has been subject to extensive research in the period of 1999-2007 when more than 100 ISEs employing Schiff bases were constructed. The quantitative high-throughput detection of 29 cations and 7 anions has been demonstrated in various scientific branches, such as biomedicine, pharmacy, biochemistry, pharmacology, environmental chemistry, food technology, and agriculture. This review discusses Schiff base compounds and their applications in the design and development of ion selective sensors and microsensors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The malate dehydrogenase (MDH) and ascorbate oxidase were immobilized independently, onto silanized controlled porous silica and packed in a tygon tube. The reactors were inserted in the flow system, and the malic acid was determined by measurement of NADH produced by enzymatic reaction. The NADH was reoxidized in a wall jet cell that consisted of spectrographic graphite, Ag/AgCl, KCl(sat), and steel needle as work, reference, and counter electrodes, respectively. The current intensities were measured at 390 mV. The malate calibration curve shows a linear range from 5.0 x 10(-6) to 1.0 x 10(-4) molL(-1), the lifetime was 40 analyses, after that a decrease of 20% on the response is observed. Three different citric juices were analyzed and a good correlation between the proposed method and spectrophotometric commercial kit were obtained.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Differential pulse stripping voltammetry method(DPSV) was applied to the determination of three herbicides, ametryn, cyanatryn, and dimethametryn. It was found that their voltammograms overlapped strongly, and it is difficult to determine these compounds individually from their mixtures. With the aid of chemometrics, classical least squares(CLS), principal component regression(PCR) and partial least squares(PLS), voltammogram resolution and quantitative analysis of the synthetic mixtures of the three compounds were successfully performed. The proposed method was also applied to the analysis of some real samples with satisfactory results.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A novel differential pulse voltammetry (DPV) method was developed for the simultaneous analysis of herbicides in water. A mixture of four herbicides, atrazine, simazine, propazine and terbuthylazine was analyzed simultaneously and the complex, overlapping DPV voltammograms were resolved by several chemometrics methods such as partial least squares (PLS), principal component regression (PCR) and principal component–artificial networks (PC–ANN). The complex profiles of the voltammograms collected from a synthetic set of samples were best resolved with the use of the PC–ANN method, and the best predictions of the concentrations of the analytes were obtained with the PC-ANN model (%RPET = 6.1 and average %Recovery = 99.0). The new method was also used for analysis of real samples, and the obtained results were compared well with those from the GC-MS technique. Such conclusions suggest that the novel method is a viable alternative to the other commonly used methods such as GC, HPLC and GC-MS.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This work presents a new electrode, 2-benzoylnaphtho 2,1-b]furan hydrazone exfoliated graphite paste electrode (B-EGPE) fabricated for the differential pulse anodic stripping voltammetric determination of lead (Pb). Under the optimal conditions, Pb2+ could be detected in the concentration range from 2.75 x 10(-7) to 1.5 x 10(-6) mol/L with the linear regression equation, y = 19.41 x 10(-6) x + 0.4249 x 10(-9) with R = 0.99. Interferences from other ions were investigated and the proposed method was further applied to the trace levels of Pb2+ detection in real samples with satisfactory results.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Okadaic acid, a diarrhetic shellfish poison, domoic acid, an amnesic shellfish poison, and saxitoxin, a paralytic shellfish poison, are three of the best-known marine biotoxins. The mouse bioassay is the method most widely used to detect many of these toxins in shellfish samples, but animal welfare concerns have prompted researchers to seek alternative methods of detection. In this study, three direct competitive enzyme-linked immunosorbent assays (ELISAs), each based on antibodies raised in rabbits against a conjugate of the analyte of interest, were developed for marine biotoxin detection in mussel, oyster, and scallop. One assay was for okadaic acid, one for saxitoxin, and one for domoic acid usually detected and quantified by high-performance liquid chromatography-ultraviolet light (HPLC-UV). All three compounds and a number of related toxins were extracted quickly and simply from the shellfish matrices with a 9 : 1 mixture of ethanol and water before analysis. The detection capabilities (CC values) of the developed ELISAs were 150 mu g kg-1 for okadaic acid, 50 mu g kg-1 for domoic acid, and 5 mu g kg-1 or less for saxitoxin. The assays proved satisfactory when used over a 4-month period for the analysis of 110 real samples collected in Belgium.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A chemical process optimization and control is strongly correlated with the quantity of information can be obtained from the system. In biotechnological processes, where the transforming agent is a cell, many variables can interfere in the process, leading to changes in the microorganism metabolism and affecting the quantity and quality of final product. Therefore, the continuously monitoring of the variables that interfere in the bioprocess, is crucial to be able to act on certain variables of the system, keeping it under desirable operational conditions and control. In general, during a fermentation process, the analysis of important parameters such as substrate, product and cells concentration, is done off-line, requiring sampling, pretreatment and analytical procedures. Therefore, this steps require a significant run time and the use of high purity chemical reagents to be done. In order to implement a real time monitoring system for a benchtop bioreactor, these study was conducted in two steps: (i) The development of a software that presents a communication interface between bioreactor and computer based on data acquisition and process variables data recording, that are pH, temperature, dissolved oxygen, level, foam level, agitation frequency and the input setpoints of the operational parameters of the bioreactor control unit; (ii) The development of an analytical method using near-infrared spectroscopy (NIRS) in order to enable substrate, products and cells concentration monitoring during a fermentation process for ethanol production using the yeast Saccharomyces cerevisiae. Three fermentation runs were conducted (F1, F2 and F3) that were monitored by NIRS and subsequent sampling for analytical characterization. The data obtained were used for calibration and validation, where pre-treatments combined or not with smoothing filters were applied to spectrum data. The most satisfactory results were obtained when the calibration models were constructed from real samples of culture medium removed from the fermentation assays F1, F2 and F3, showing that the analytical method based on NIRS can be used as a fast and effective method to quantify cells, substrate and products concentration what enables the implementation of insitu real time monitoring of fermentation processes

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A method for the identification and quantification of pesticide residues in water, soil, and sediment samples has been developed, validated, and applied for the analysis of real samples. The specificity was determined by the retention time and the confirmation and quantification of analyte ions. Linearity was demonstrated over the concentration range of 20 to 120 µg L(-1), and the correlation coefficients varied between 0.979 and 0.996, depending on the analytes. The recovery rates for all analytes in the studied matrix were between 86% and 112%. The intermediate precision and repeatability were determined at three concentration levels (40, 80, and 120 µg L(-1)), with the relative standard deviation for the intermediate precision between 1% and 5.3% and the repeatability varying between 2% and 13.4% for individual analytes. The limits of detection and quantification for fipronil, fipronil sulfide, fipronil-sulfone, and fipronil-desulfinyl were 6.2, 3.0, 6.6, and 4.0 ng L(-1) and 20.4, 9.0, 21.6, and 13.0 ng L(-1), respectively. The method developed was used in water, soil, and sediment samples containing 2.1 mg L(-1) and 1.2% and 5.3% of carbon, respectively. The recovery of pesticides in the environmental matrices varied from 88.26 to 109.63% for the lowest fortification level (40 and 100 µg kg(-1)), from 91.17 to 110.18% for the intermediate level (80 and 200 µg kg(-1)), and from 89.09 to 109.82% for the highest fortification level (120 and 300 µg kg(-1)). The relative standard deviation for the recovery of pesticides was under 15%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper examines the impact of allowing for stochastic volatility and jumps (SVJ) in a structural model on corporate credit risk prediction. The results from a simulation study verify the better performance of the SVJ model compared with the commonly used Merton model, and three sources are provided to explain the superiority. The empirical analysis on two real samples further ascertains the importance of recognizing the stochastic volatility and jumps by showing that the SVJ model decreases bias in spread prediction from the Merton model, and better explains the time variation in actual CDS spreads. The improvements are found particularly apparent in small firms or when the market is turbulent such as the recent financial crisis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is well known that the neutralisation of Bayer liquor with seawater causes the precipitation of stable alkaline products and a reduction in pH and dissolved metal concentrations in the effluent. However, there is limited information available on solution chemistry effects on the stability and reaction kinetics of these precipitates. This investigation shows the influence of reactive species (magnesium and calcium) in seawater on precipitate stabilities and volumetric efficiencies during the neutralisation of bauxite refinery residues. Correlations between synthetic seawater solutions and real samples of seawater (filtered seawater, nanofiltered seawater and reverse osmosis brine) have been made. These investigations have been used to confirm that alternative seawater sources can be used to increase the productivity potential of the neutralisation process with minimal implications on the composition and stability of precipitates formed. The volume efficiency of the neutralisation process using synthetic analogues has been shown to be almost directly proportional with the concentration of magnesium. This was further confirmed in the nanofiltered seawater and reverse osmosis brine that showed increases in the efficiency of neutralisation by factors of 3 and 2 compared to seawater, which corresponds with relatively the same increase in the concentration of magnesium in these alternative seawater sources. An assessment of the chemical stability of the precipitates, volumetric efficiency, and discharge water quality have been determined using numerous techniques that include pH, conductivity, inductively coupled plasma optical emission spectroscopy, infrared spectroscopy, thermogravimetric analysis coupled to mass spectrometry and X-ray diffraction. Correlations between synthetic solution compositions and alternative seawater sources have been used to determine if alternative seawater sources are potential substitutes for seawater based on improvements in productivity, implementation costs, savings to operations and environmental benefits.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present work a gold modified pencil graphite electrode (GPGE) was used for the determination of L-dopa present in the aqueous extracts of Mucuna pruriens seeds (MPS), Mucuna pruriens leaves (MPL) and Commercial Siddha Product (CSP). The GPGE shows excellent electrocatalytic activity towards the oxidation of both L-dopa and ascorbic acid (AA), with the separation of peak potential of 98 mV. The differential pulse voltammetric (DPV) results indicated that the detection limit for L-dopa was 1.54 mu M (S/N=3). This method can be successfully applied for the determination of L-dopa in real samples.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, for the first time, we have reported the novel synthesis of reduced graphene oxide (r-GO) dendrite kind of nanomaterial. The proposed r-GO dendrite possesses multifunctional properties in various fields of sensing and separation. The dendrite was synthesized by chemical reaction in different steps. Initially, the r-GO sheet was conjugated with silane group modified magnetic nanoparticle, resulting in nanoparticle decorated r-GO. The above r-GO sheet was further reacted with a new r-GO sheet, resulting in the formation of r-GO dendrite type of structure. Multifunctional behavior of this r-GO dendrite structure was studied by different methods. First, magnetic properties were studied by vibrating sample magnetometer (VSM) and it was found that dendrite structure shows good magnetic susceptibility (180.2 emu/g). The proposed r-GO dendrite also shows a very good antibacterial behavior for Escherichia coli and excellent electrochemical behavior towards ferrocyanide probe molecule. Along with these, it also acts as a substrate for the synthesis of molecularly imprinted polymer for europium metal ion, a lanthanide. The proposed imprinted sensor shows a very high selectivity and sensitivity for europium metal ion (limit of detection= 0.019 mu g L-1) in aqueous as well as real samples. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel and highly sensitive sensing strategy for the detection of organophosphorus compounds (OPs) based on the catalytic reaction of acetylcholinesterase (AChE) and acetylcholine (ATCh) during the modulated synthesis of silver nanoparticles (AgNPs) has been developed. The enzymatic hydrolysis of ATCh by AChE yields thiocholine (TCh), which induces the aggregation of AgNPs during synthesis, and the absorption peak at 382 nm corresponding to AgNPs decreases. The enzymatic reaction can be regulated by OPs, which can covalently bind to the active site of AChE and decrease the TCh formation, thereby decreasing the aggregation and significantly enhancing the absorption peak at 382 nm. The proposed system achieved good linearity and limits of detection of 0.078 nM and 2.402 nM for trichlorfon and malathion, respectively, by UV-visible spectroscopy. Further, the sensitivity of the proposed system was demonstrated through the determination of OPs in different spiked real samples. The described work shows the potential application for further development of a colorimetric sensor for other OP pesticide detection during the synthesis of AgNPs using enzyme-based assays.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Time variability of the scattering signals from wind turbines may lead to degradation problems on the communication systems provided in the UHF band, especially under near field condition. In order to analyze the variability due to the rotation of the blades, this paper characterizes empirical Doppler spectra obtained from real samples of signals scattered by wind turbines with rotating blades under near field condition. A new Doppler spectrum model is proposed to fit the spectral characteristics of these signals, providing notable goodness of fit. Finally, the effect of this kind of time variability on the degradation of OFDM signals is studied.