128 resultados para Razonamientos
Resumo:
Resumen tomado de la revista
Resumo:
Resumen basado en el de la publicación
Resumo:
Resumen de la revista
Resumo:
Resumen basado en el que aporta la revista
Resumo:
Resumen basado en el de la publicación
Resumo:
Esta investigación educativa trata de analizar las causas del fracaso de los estudiantes que cursan la materia Química General e Inorgánica en dos aspectos importantes: el bajo rendimiento académico manifestado por los alumnos, medido en términos de falta de estudio, dificultad para aprender los conceptos más abstractos y un alto porcentaje de alumnos que no aprueban evaluaciones con aplicaciones de conceptos; la baja retención, por parte de los alumnos, de conceptos desarrollados y evaluados durante el curso. La mayor parte de los alumnos cursa la materia con el único incentivo de aprobarla con un mínimo esfuerzo, es decir estudiando Química fuera del aula y sólo ante una evaluación. Los docentes son conscientes de que a un número importante de alumnos les resulta difícil el aprendizaje de los contenidos de la materia e incomprensibles. Es cierto afirmar que tanto los contenidos como los tratamientos de estas asignaturas como los tratamientos que el docente realiza sobre ellos, requieren del alumno un alto grado de abstracción. Parece ser que la estructura conceptual de la Química no brinda al estudiante un marco adecuado para la adquisición y apropiación de los conceptos químico, al ser una asignatura que presenta un campo de conocimiento complejo.
Resumo:
Duración (en horas): De 31 a 40 horas. Nivel educativo: Grado
Resumo:
En este trabajo utilizamos los razonamientos que llevan a cabo doce alumnos de Secundaria durante la resolución de una tarea matemática para detectar los errores en que incurren y las dificultades que encuentran en su ejecución. Se les propone la tarea en un contexto de entrevista semiestructurada en la que se guía a los alumnos por el camino a seguir. Entre los datos que se obtienen, se encuentran los errores aparecidos en el desarrollo de la tarea. El análisis de dichos errores se ha hecho siguiendo las clasificaciones de Evans (González, 1998) y Radatz (1979), y se conecta dichos errores con dificultades específicas siguiendo la clasificación de Socas (1997). Se concluye este trabajo con algunas reflexiones que conside-ramos interesantes para profesionales de la enseñanza de las matemáticas.
Resumo:
Se presenta en este capítulo un trabajo de investigación en el que se ha estudiado el uso que hacen unos alumnos de educación secundaria del razonamiento inductivo, cuando se les propone resolver un problema que no les resulta familiar. Para ello se ha elegido una tarea para cuya resolución es apropiado utilizar dicho razonamiento. Se han llevado a cabo entrevistas a los alumnos en el momento en el que realizaban la tarea, e ir explicando sus razonamientos. La preparación teórica básica de la investigación, el desarrollo de la actividad, así como los resultados obtenidos, constituyen el contenido de este documento.
Resumo:
Son muchas las investigaciones que han resaltado la importancia de un conocimiento de la evolución histórica de un concepto matemático en la comprensión de los obstáculos y razonamientos de los estudiantes al interior del aula de clase (Posada & Villa,2006). Con base en este argumento, se presenta en este documento los resultados de una indagación histórica sobre la evolución del concepto de función cuadrática que ofrece al lector algunas pautas que le sean útiles a la hora de diseñar situaciones didácticas que involucren el concepto objeto de este estudio.
Resumo:
En la formación de estudiantes para docentes en matemáticas del proyecto curricular licenciatura en educación básica con énfasis en matemáticas (LEBEM), es importante para el desarrollo de nuestro quehacer profesional considerar aspectos relevantes que influyen en los procesos de enseñanza-aprendizaje, como lo son: las estructuras del pensamiento (en el sentido de los conocimientos previos de los estudiantes, sus dificultades, razonamientos y demás), el contexto y las situaciones de enseñanza que se proponen. Lo anterior nos llevó a reflexionar acerca de la manera en que tenemos en cuenta estos tres aspectos en el momento de diseñar un ambiente de aprendizaje, de manera que las construcciones realizadas por los estudiantes les sean significativas, lo cual implica que ellos puedan establecer conexiones con la utilidad que tiene el conocimiento en la resolución de problemas y la comprensión de fenómenos de la vida cotidiana.
Resumo:
En este taller los participantes, a partir del desarrollo de una tarea, identifican algunas etapas en la formulación y validación de conjeturas. La tarea se centra en la exploración de un applet relacionado con la ecuación vectorial de la recta en el plano, a partir del cual se identifican algunas propiedades geométricas del objeto geométrico y, con estas, se establecen e intentan validar generalidades. Este taller surge en el marco del proyecto de investigación “Razonamientos abductivos, inductivos y deductivos desarrollados por estudiantes del curso de Geometría Analítica al realizar una tarea relacionada con la representación de objetos geométricos en distintos sistemas coordenados” que se realiza este año en la Universidad Pedagógica Nacional.
Resumo:
La estructura conceptual de las razones trigonométricas, como la de cualquier concepto de la matemática escolar, se caracteriza por las estructuras matemáticas involucradas, las relaciones conceptuales y las relaciones de representación. De esta manera, en esta comunicación presento el análisis sobre los hechos, conceptos y estructura conceptual del campo conceptual, y las destrezas, razonamientos y estrategias del campo procedimental de las razones trigonométricas.
Resumo:
En ese trabajo se analizan las respuestas de estudiantes de secundaria a tareas numéricas susceptibles de resolverse haciendo uso de sentido numérico. Se analizan las estrategias y los razonamientos de sentido numérico frente a los procedimientos algorítmicos y de aplicación de reglas. Se observa cómo el uso del sentido numérico queda condicionado por dificultades y errores en conceptos numéricos propios de niveles básicos y por el tipo de actividad. Las tareas con enunciados semejantes a los tradicionales presentan mayor aparición de reglas y algoritmos.
Resumo:
Interesa a este estudio detectar modos de razonamiento matemático propiciados en los alumnos desde las prácticas docentes de los profesores. Se pretende hacer un estudio de casos en donde se identifiquen estos razonamientos. Algunas de las preguntas guía de este estudio son: ¿Qué relación hay entre los propósitos de la asignatura con el perfil de egreso de la educación media superior? ¿De que manera influye la formación del profesor en su práctica docente y que modos de razonamiento desarrolla dentro de esta? ¿Qué es lo que busca el profesor en la bibliografía y qué fuentes consulta y dónde las consulta? ¿Cuál es la dinámica ambiental dentro del aula? ¿qué tipo de actitudes se generan en el aula? ¿se favorecen sujetos críticos y reflexivos, con la posibilidad de expresarse y de preguntarse? ¿Qué tipo de actitudes muestran los alumnos? bajo la perspectiva de los modos de pensamiento analizados por Sierpinska, quien maneja los modos geométrico–sintético, analíticoaritmético y analítico-estructural. Frente a los altos índices de reprobación de los alumnos de Bachillerato General en la asignatura de Álgebra, surge el desafío para los docentes de reemplazar la memorización por una comprensión más profunda. Lo que se pretende es que las matemáticas sean, para el estudiante, herramientas funcionales y flexibles que le permitan resolver las situaciones problemáticas que se le planteen, en diversos ámbitos. A la perspectiva técnica se opone la perspectiva práctica, a los dos puntos de vistas mencionados se agrega un nuevo enfoque: estratégico, donde las actividades educativas están históricamente localizadas, las cuales tienen un lugar, sobre un trasfondo socio histórico y proyectan una visión de la clase de futuro que deseamos construir.