957 resultados para Radio circuits
Resumo:
As comunicações marítimas são ainda fortemente efetivadas por meio de circuitos rádio convencionais empregando ondas terrestres, em bandas de MF a VHF, especialmente após a introdução de sistemática de chamadas seletivas digitais. Entretanto, um número significativo de procedimentos operacionais nas radiocomunicações ainda depende de intervenções de operador, reduzindo sua eficiência e dando margem ao cometimento de erros como emissão de falsos alarmes de socorro. Esses erros têm sido frequentes e têm ocasionado muito desvio de atenção das ocorrências reais e perdas de tempo nas instâncias que cuidam das ações de busca e salvamento no mar, afetando, seriamente, a confiabilidade no processo de comunicações terrestres. Em vista disto, propõem-se, nesta pesquisa, sistemáticas para controle das emissões de falsos alertas de socorro, nas transmissões por ondas terrestres, e para melhorar o processo vigente de transmissão de chamadas. As chamadas de socorro recebidas pelas estações costeiras são identificadas por estas, de acordo com as estações que as emitiu, objetivando subsidiar ações corretivas por instâncias competenrtes, para inibição de novas ocorrências. Paralelamente, maior nível de automação é proposto para os processos de chamadas, reduzindo-se a dependência de procedimentos manuais e, assim, as possibilidades de emissões equivocadas, além de melhor aproveitar o conceito de chamada seletiva do sistema vigente. Tais proposições dão maior eficiência e confiabilidade às comunições terrestres, úteis especialmente nas situações de emergências, sem adicionar significativas demandas operacionais nas estações, incentivando e melhorando as condições de comunicações no SMM por ondas terrestres.
Resumo:
This work is focused on the subject of air radio navigation systems embedded on aircraft and in the ground stations. Initially is presented a historical context and motivation of the chosen theme. In the following chapters the basics avionics systems are presented, ADF, VOR, DME and ILS such that there is a deepening of electronics theory behind the operation of each system. In this graduate work were presented theories involved in systems such as the definition and creation of radio waves, the frequency spectrum used by each system, the modulation and demodulation of waves, the operating block diagrams of embedded receiver in the aircraft and the terrestrial source station, and the errors involved in the use of each system
Resumo:
This work is focused on the subject of air radio navigation systems embedded on aircraft and in the ground stations. Initially is presented a historical context and motivation of the chosen theme. In the following chapters the basics avionics systems are presented, ADF, VOR, DME and ILS such that there is a deepening of electronics theory behind the operation of each system. In this graduate work were presented theories involved in systems such as the definition and creation of radio waves, the frequency spectrum used by each system, the modulation and demodulation of waves, the operating block diagrams of embedded receiver in the aircraft and the terrestrial source station, and the errors involved in the use of each system
Resumo:
Programa de doctorado: Tecnologías de Telecomunicación Avanzadas
Resumo:
209 p. : graf.
Resumo:
A vaginally-worn temperature telemeter may be used by women to chart their basal body temperature for ovulation detection. The telemeter uses a temperature to pulse width converter to key a Colpitts oscillator which is controlled in frequency by a 418 MHz SAW resonator. The circuit’s tank inductor acts as a compact, multi-turn loop antenna with a radiated power in isolation of around 1 uW. The transmission characteristics of the system are affected by the proximity of the human body, which acts as an electrically-large lossy dielectric. The RF link-budget must allow for the reduction in total emitted power, directional body-induced fading, and polarization effects. The polar power patterns of the telemeter were measured for both isolated and in-situ cases, using horizontal and vertical polarization. The power patterns were numerically integrated to determine relative emitted power, and a reference dipole used to determine the emitted power for the isolated device. In isolation the telemeter radiation is vertically polarized and isotropic in nature. With the telemeter in-situ, total body absorption was found to be over 20 dB, with directional fades of up to 40 dB; there was extensive cross-polarization, with up to 60% of radiated power horizontally polarized. With limited radiated power and directional fading, the operating range for the telemeter is limited to single room operation (less than 10m). The majority of RF radiation is absorbed by the body, but the radiation hazard is negligible due to the low power level of the device. The high level of cross-polarization suggests that either horizontal or vertically polarized base-station antennas may be used.
Resumo:
Modern wireless systems are expected to operate in multiple frequency bands and support diverse communications standards to provide the high volume and speed of data transmission. Today's major limitations of their performance are imposed by interference, spurious emission and noise generated by high-power carriers in antennas and passive components of the RF front-end. Passive Intermodulation (PIM), which causes the combinatorial frequency generation in the operational bands, presents a primary challenge to signal integrity, system efficacy and data throughput. © 2013 IEEE.
Resumo:
The paper details on-chip inductor optimization for a reconfigurable continuous-time delta-sigma (Δ-Σ) modulator based radio-frequency analog-to-digital converter. Inductor optimisation enables the Δ-Σ modulator with Q enhanced LC tank circuits employing a single high Q-factor on-chip inductor and lesser quantizer levels thereby reducing the circuit complexity for excess loop delay, power dissipation and dynamic element matching. System level simulations indicate at a Q-factor of 75 Δ- Σ modulator with a 3-level quantizer achieves dynamic ranges of 106, 82 dB and 84 dB for RFID, TETRA, and Galileo over bandwidths of 200 kHz, 10 MHz and 40 MHz respectively.
Resumo:
Radio frequency (RF) energy harvesting is an emerging technology that will enable to drive the next generation of wireless sensor networks (WSNs) without the need of using batteries. In this paper, we present RF energy harvesting circuits specifically developed for GSM bands (900/1800) and a wearable dual-band antenna suitable for possible implementation within clothes for body worn applications. Besides, we address the development and experimental characterization of three different prototypes of a five-stage Dickson voltage multiplier (with match impedance circuit) responsible for harvesting the RF energy. Different printed circuit board (PCB) fabrication techniques to produce the prototypes result in different values of conversion efficiency. Therefore, we conclude that if the PCB fabrication is achieved by means of a rigorous control in the photo-positive method and chemical bath procedure applied to the PCB it allows for attaining better values for the conversion efficiency. All three prototypes (1, 2 and 3) can power supply the IRIS sensor node for RF received powers of -4 dBm, -6 dBm and -5 dBm, and conversion efficiencies of 20, 32 and 26%, respectively. © 2014 IEEE.
Resumo:
A genetic algorithm used to design radio-frequency binary-weighted differential switched capacitor arrays (RFDSCAs) is presented in this article. The algorithm provides a set of circuits all having the same maximum performance. This article also describes the design, implementation, and measurements results of a 0.25 lm BiCMOS 3-bit RFDSCA. The experimental results show that the circuit presents the expected performance up to 40 GHz. The similarity between the evolutionary solutions, circuit simulations, and measured results indicates that the genetic synthesis method is a very useful tool for designing optimum performance RFDSCAs.
Resumo:
Telecommunications have been in constant evolution during past decades. Among the technological innovations, the use of digital technologies is very relevant. Digital communication systems have proven their efficiency and brought a new element in the chain of signal transmitting and receiving, the digital processor. This device offers to new radio equipments the flexibility of a programmable system. Nowadays, the behavior of a communication system can be modified by simply changing its software. This gave rising to a new radio model called Software Defined Radio (or Software-Defined Radio - SDR). In this new model, one moves to the software the task to set radio behavior, leaving to hardware only the implementation of RF front-end. Thus, the radio is no longer static, defined by their circuits and becomes a dynamic element, which may change their operating characteristics, such as bandwidth, modulation, coding rate, even modified during runtime according to software configuration. This article aims to present the use of GNU Radio software, an open-source solution for SDR specific applications, as a tool for development configurable digital radio.
Resumo:
Electromagnetic spectrum can be identified as a resource for the designer, as well as for the manufacturer, from two complementary points of view: first, because it is a good in great demand by many different kind of applications; second, because despite its scarce availability, it may be advantageous to use more spectrum than necessary. This is the case of Spread-Spectrum Systems, those systems in which the transmitted signal is spread over a wide frequency band, much wider, in fact, than the minimum bandwidth required to transmit the information being sent. Part I of this dissertation deals with Spread-Spectrum Clock Generators (SSCG) aiming at reducing Electro Magnetic Interference (EMI) of clock signals in integrated circuits (IC) design. In particular, the modulation of the clock and the consequent spreading of its spectrum are obtained through a random modulating signal outputted by a chaotic map, i.e. a discrete-time dynamical system showing chaotic behavior. The advantages offered by this kind of modulation are highlighted. Three different prototypes of chaos-based SSCG are presented in all their aspects: design, simulation, and post-fabrication measurements. The third one, operating at a frequency equal to 3GHz, aims at being applied to Serial ATA, standard de facto for fast data transmission to and from Hard Disk Drives. The most extreme example of spread-spectrum signalling is the emerging ultra-wideband (UWB) technology, which proposes the use of large sections of the radio spectrum at low amplitudes to transmit high-bandwidth digital data. In part II of the dissertation, two UWB applications are presented, both dealing with the advantages as well as with the challenges of a wide-band system, namely: a chaos-based sequence generation method for reducing Multiple Access Interference (MAI) in Direct Sequence UWB Wireless-Sensor-Networks (WSNs), and design and simulations of a Low-Noise Amplifier (LNA) for impulse radio UWB. This latter topic was studied during a study-abroad period in collaboration with Delft University of Technology, Delft, Netherlands.
Resumo:
In this paper an implementation of a Wake up Radio(WuR) with addressing capabilities based on an ultra low power FPGA for ultra low energy Wireless Sensor Networks (WSNs) is proposed. The main goal is to evaluate the utilization of very low power configurable devices to take advantage of their speed, flexibility and low power consumption instead of the traditional approaches based on ASICs or microcontrollers, for communication frame decoding and communication data control.
Resumo:
Mode of access: Internet.
Resumo:
"Based on an earlier work entitled UHF radio simplified, by M.S. Kiver."