964 resultados para ROOM-TEMPERATURE OPERATION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate room temperature operation of photonic-crystal distributed-feedback quantum cascade lasers emitting at 4.7 mu m. A rectangular photonic crystal lattice perpendicular to the cleaved facet was defined using holographic lithography. The anticrossing of the index- and Bragg-guided dispersions of rectangular lattice forms the band-edge mode with extended mode volume and reduced group velocity. Utilizing this coupling mechanism, single mode operation with a near-diffractive-limited divergence angle of 12 degrees is obtained for 33 mu m wide devices in a temperature range of 85-300 K. The reduced threshold current densities and improved heat dissipation management contribute to the realization of devices' room temperature operation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Room temperature operation is an important criterion for high performance of quantum cascade lasers. A strain-compensated quantum cascade laser(λ≈5.5μm) with optimized waveguide structure lasing at room temperature is reported. Accurate control of layer thickness and strain-compensated material composition is demonstrated using X-ray diffraction. An output power of at least 45mW per facet is realized for a 20μm-wide and 2mm-long laser at room temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A widely tunable and room-temperature operationable loss filter based on a long-period fibre grating (LPFG) fabricated in a B/Ge codoped fibre is reported. The filter exhibits extremely high temperature sensitivity. A maximum spectral shift of -48.1 nm from 10 to 40°C is achieved, corresponding to a thermal tuning efficiency of 1.6nm/°C. This value is increased by more than one order of magnitude compared with the LPFGs fabricated in standard telecom fibre, and even twice that of a LPFG with sensitivity enhanced by a special polymer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Room-temperature operation of cw GaN based multi-quantum-well laser diodes (LDs) is demonstrated. The LD structure is grown on a sapphire (0001) substrate by metalorganic chemical vapour deposition. A 2.5 mu m x 800 mu m ridge waveguide structure is fabricated. The electrical and optical characteristics of the laser diode under direct current injection at room temperature are investigated. The threshold current and voltage of the LD under cw operation are 110mA and 10.5V, respectively. Thermal induced series resistance decrease and emission wavelength red-shift are observed as the injection current is increased. The full width at half maximum for the parallel and perpendicular far field pattern (FFP) are 12 degrees and 32 degrees, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The unique optoelectronic properties of graphene make it an ideal platform for a variety of photonic applications, including fast photodetectors, transparent electrodes in displays and photovoltaic modules, optical modulators, plasmonic devices, microcavities, and ultra-fast lasers. Owing to its high carrier mobility, gapless spectrum and frequency-independent absorption, graphene is a very promising material for the development of detectors and modulators operating in the terahertz region of the electromagnetic spectrum (wavelengths in the hundreds of micrometres), still severely lacking in terms of solid-state devices. Here we demonstrate terahertz detectors based on antenna-coupled graphene field-effect transistors. These exploit the nonlinear response to the oscillating radiation field at the gate electrode, with contributions of thermoelectric and photoconductive origin. We demonstrate room temperature operation at 0.3 THz, showing that our devices can already be used in realistic settings, enabling large-area, fast imaging of macroscopic samples. © 2012 Macmillan Publishers Limited. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antenna-coupled field effect transistors have been developed as plasma-wave THz detectors in both InAs nanowire and graphene channel material. Room temperature operation has been achieved up to frequencies of 1.5 THz, with noise equivalent powers as low as a few 10-11 W/Hz1/2, and high-speed response. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report room temperature operation of telecom wavelength single-photon detectors for high bit rate quantum key distribution (QKD). Room temperature operation is achieved using InGaAs avalanche photodiodes integrated with electronics based on the self-differencing technique that increases avalanche discrimination sensitivity. Despite using room temperature detectors, we demonstrate QKD with record secure bit rates over a range of fiber lengths (e.g., 1.26 Mbit/s over 50 km). Furthermore, our results indicate that operating the detectors at room temperature increases the secure bit rate for short distances. © 2014 AIP Publishing LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antenna-coupled field effect transistors have been developed as plasma-wave THz detectors in both InAs nanowire and graphene channel materials. Room temperature operation has been achieved up to 3 THz, with noise equivalent power levels < 10-10 W/Hz1/2, and high-speed response already suitable for large area THz imaging applications. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The single electron transistor (SET) is a Coulomb blockade device, whose operation is based on the controlled manipulation of individual electrons. Single electron transistors show immense potential to be used in future ultra lowpower devices, high density memory and also in high precision electrometry. Most SET devices operate at cryogenic temperatures, because the charging energy is much smaller than the thermal oscillations. The room temperature operation of these devices is possible with sub- 10nm nano-islands due to the inverse dependance of charging energy on the radius of the conducting nano-island. The fabrication of sub-10nm features with existing lithographic techniques is a technological challenge. Here we present the results for the first room temperature operating SET device fabricated using Focused Ion Beam deposition technology. The SET device, incorporates an array of tungsten nano-islands with an average diameter of 8nm. The SET devices shows clear Coulomb blockade for different gate voltages at room temperature. The charging energy of the device was calculated to be 160.0 meV; the capacitance per junction was found to be 0.94 atto F; and the tunnel resistance per junction was calculated to be 1.26 G Ω. The tunnel resistance is five orders of magnitude larger than the quantum of resistance (26 k Ω) and allows for the localization of electrons on the tungsten nano-island. The lower capacitance of the device combined with the high tunnel resistance, allows for the Coulomb blockade effects observed at room temperature. Different device configurations, minimizing the total capacitance of the device have been explored. The effect of the geometry of the nano electrodes on the device characteristics has been presented. Simulated device characteristics, based on the soliton model have been discussed. The first application of SET device as a gas sensor has been demonstrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The single-electron transistor (SET) is one of the best candidates for future nano electronic circuits because of its ultralow power consumption, small size and unique functionality. SET devices operate on the principle of Coulomb blockade, which is more prominent at dimensions of a few nano meters. Typically, the SET device consists of two capacitively coupled ultra-small tunnel junctions with a nano island between them. In order to observe the Coulomb blockade effects in a SET device the charging energy of the device has to be greater that the thermal energy. This condition limits the operation of most of the existing SET devices to cryogenic temperatures. Room temperature operation of SET devices requires sub-10nm nano-islands due to the inverse dependence of charging energy on the radius of the conducting nano-island. Fabrication of sub-10nm structures using lithography processes is still a technological challenge. In the present investigation, Focused Ion Beam based etch and deposition technology is used to fabricate single electron transistors devices operating at room temperature. The SET device incorporates an array of tungsten nano-islands with an average diameter of 8nm. The fabricated devices are characterized at room temperature and clear Coulomb blockade and Coulomb oscillations are observed. An improvement in the resolution limitation of the FIB etching process is demonstrated by optimizing the thickness of the active layer. SET devices with structural and topological variation are developed to explore their impact on the behavior of the device. The threshold voltage of the device was minimized to ~500mV by minimizing the source-drain gap of the device to 17nm. Vertical source and drain terminals are fabricated to realize single-dot based SET device. A unique process flow is developed to fabricate Si dot based SET devices for better gate controllability in the device characteristic. The device vi parameters of the fabricated devices are extracted by using a conductance model. Finally, characteristic of these devices are validated with the simulated data from theoretical modeling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we show room temperature operation of a quantum well infrared photodetector (QWIP) using lateral conduction through ohmic contacts deposited at both sides of two n-doped quantum wells. To reduce the dark current due to direct conduction in the wells, we apply an electric field between the quantum wells and two pinch-off Schottky gates, in a fashion similar to a field effect device. Since the normal incidence absorption is strongly reduced in intersubband transitions in quantum wells, we first analyze the response of a detector based on quantum dots (QD). This QD device shows photocurrent signal up to 150 K when it is processed in conventional vertical detector. However, it is possible to observe room temperature signal when it is processed in a lateral structure. Finally, the room temperature photoresponse of the QWIP is demonstrated, and compared with theory. An excellent agreement between the estimated and measured characteristics of the device is found

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the continuous-wave and acousto-optical Q-switched operation of a diode-end-pumped Tm:YAP laser. Continuous-wave output power of 3.5 W at 1.99 mu m was obtained under the absorbed pump power of 14 W. Under Q-switched laser operation, the average output power increased from 1.57 W to 2.0 W, with an absorbed pump power of 12.6 W, as the repetition rate increased from 1 kHz to 10 kHz. The maximum Q-switched pulse energy was 1.57 mJ with a repetition rate of 1 kHz. The minimum pulse width was measured to be about 80 ns, corresponding to a peak power of 19.6 kW.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A self-assembled quantum-wire laser structure was grown by solid-source molecular beam epitaxy in an InAlGaAs-InAlAs matrix oil InP(001) substrate. Ridge-waveguide lasers were fabricated and demonstrated to operate at a heatsink temperature tip to 330 K in continuous-wave (CW) mode. The emission wavelength of the lasers with 5 mm-long cavity was 1.713 mu m at room temperature in CW mode. The temperature stability of the devices was analysed and the characteristic temperature was found to be 47 K in the mnge of 220-320 K.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A short wavelength (lambda similar or equal to 3.5 mu m) strain-compensated InxGa(1-x)As/InyAl(1-y)As quantum cascade laser is reported. Quasi-continuous wave operation of this device at 34 degrees C with an output power of 11.4mW persisted for more than 30 minutes without obvious degradation. A very low threshold current density of 1.2KA/cm(2) at this temperature was observed.