1000 resultados para Quiver of an algebra


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we give a sufficient (which is also necessary under a compatibility hypothesis) condition on a set of arrows in the quiver of an algebra A so that A is a split extension of A/M, where M is the ideal of A generated by the classes of these arrows. We also compare the notion of split extension with that of semiconvex extension of algebras.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of classification of Jordan bit-nodules over (non-semisimple) finite dimensional Jordan algebras with respect to their representation type is considered. The notions of diagram of a Jordan algebra and of Jordan tensor algebra of a bimodule are introduced and a mapping Qui is constructed which associates to the diagram of a Jordan algebra J the quiver of its universal associative enveloping algebra S(J). The main results are concerned with Jordan algebras of semi-matrix type, that is, algebras whose semi-simple component is a direct sum of Jordan matrix algebras. In this case, criterion of finiteness and tameness for one-sided representations are obtained, in terms of diagram and mapping Qui, for Jordan tensor algebras and for algebras with radical square equals to 0. (c) 2010 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Let M be an Abelian W*-algebra of operators on a Hilbert space H. Let M0 be the set of all linear, closed, densely defined transformations in H which commute with every unitary operator in the commutant M’ of M. A well known result of R. Pallu de Barriere states that if ɸ is a normal positive linear functional on M, then ɸ is of the form T → (Tx, x) for some x in H, where T is in M. An elementary proof of this result is given, using only those properties which are consequences of the fact that ReM is a Dedekind complete Riesz space with plenty of normal integrals. The techniques used lead to a natural construction of the class M0, and an elementary proof is given of the fact that a positive self-adjoint transformation in M0 has a unique positive square root in M0. It is then shown that when the algebraic operations are suitably defined, then M0 becomes a commutative algebra. If ReM0 denotes the set of all self-adjoint elements of M0, then it is proved that ReM0 is Dedekind complete, universally complete Riesz spaces which contains ReM as an order dense ideal. A generalization of the result of R. Pallu de la Barriere is obtained for the Riesz space ReM0 which characterizes the normal integrals on the order dense ideals of ReM0. It is then shown that ReM0 may be identified with the extended order dual of ReM, and that ReM0 is perfect in the extended sense.

Some secondary questions related to the Riesz space ReM are also studied. In particular it is shown that ReM is a perfect Riesz space, and that every integral is normal under the assumption that every decomposition of the identity operator has non-measurable cardinal. The presence of atoms in ReM is examined briefly, and it is shown that ReM is finite dimensional if and only if every order bounded linear functional on ReM is a normal integral.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motivated by the description of the C*-algebra of the affine automorphism group N6,28 of the Siegel upper half-plane of degree 2 as an algebra of operator fields defined over the unitary dual View the MathML source of the group, we introduce a family of C*-algebras, which we call almost C0(K), and we show that the C*-algebra of the group N6,28 belongs to this class.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cost-effective semantic description and annotation of shared knowledge resources has always been of great importance for digital libraries and large scale information systems in general. With the emergence of the Social Web and Web 2.0 technologies, a more effective semantic description and annotation, e.g., folksonomies, of digital library contents is envisioned to take place in collaborative and personalised environments. However, there is a lack of foundation and mathematical rigour for coping with contextualised management and retrieval of semantic annotations throughout their evolution as well as diversity in users and user communities. In this paper, we propose an ontological foundation for semantic annotations of digital libraries in terms of flexonomies. The proposed theoretical model relies on a high dimensional space with algebraic operators for contextualised access of semantic tags and annotations. The set of the proposed algebraic operators, however, is an adaptation of the set theoretic operators selection, projection, difference, intersection, union in database theory. To this extent, the proposed model is meant to lay the ontological foundation for a Digital Library 2.0 project in terms of geometric spaces rather than logic (description) based formalisms as a more efficient and scalable solution to the semantic annotation problem in large scale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the exact solution of an N-state vertex model based on the representation of the U(q)[SU(2)] algebra at roots of unity with diagonal open boundaries. We find that the respective reflection equation provides us one general class of diagonal K-matrices having one free-parameter. We determine the eigenvalues of the double-row transfer matrix and the respective Bethe ansatz equation within the algebraic Bethe ansatz framework. The structure of the Bethe ansatz equation combine a pseudomomenta function depending on a free-parameter with scattering phase-shifts that are fixed by the roots of unity and boundary variables. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spine title: Harney's algebra.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we discuss our current efforts to develop and implement an exploratory, discovery mode assessment item into the total learning and assessment profile for a target group of about 100 second level engineering mathematics students. The assessment item under development is composed of 2 parts, namely, a set of "pre-lab" homework problems (which focus on relevant prior mathematical knowledge, concepts and skills), and complementary computing laboratory exercises which are undertaken within a fixed (1 hour) time frame. In particular, the computing exercises exploit the algebraic manipulation and visualisation capabilities of the symbolic algebra package MAPLE, with the aim of promoting understanding of certain mathematical concepts and skills via visual and intuitive reasoning, rather than a formal or rigorous approach. The assessment task we are developing is aimed at providing students with a significant learning experience, in addition to providing feedback on their individual knowledge and skills. To this end, a noteworthy feature of the scheme is that marks awarded for the laboratory work are primarily based on the extent to which reflective, critical thinking is demonstrated, rather than the amount of CBE-style tasks completed by the student within the allowed time. With regard to student learning outcomes, a novel and potentially critical feature of our scheme is that the assessment task is designed to be intimately linked to the overall course content, in that it aims to introduce important concepts and skills (via individual student exploration) which will be revisited somewhat later in the pedagogically more restrictive formal lecture component of the course (typically a large group plenary format). Furthermore, the time delay involved, or "incubation period", is also a deliberate design feature: it is intended to allow students the opportunity to undergo potentially important internal re-adjustments in their understanding, before being exposed to lectures on related course content which are invariably delivered in a more condensed, formal and mathematically rigorous manner. In our presentation, we will discuss in more detail our motivation and rationale for trailing such a scheme for the targeted student group. Some of the advantages and disadvantages of our approach (as we perceived them at the initial stages) will also be enumerated. In a companion paper, the theoretical framework for our approach will be more fully elaborated, and measures of student learning outcomes (as obtained from eg. student provided feedback) will be discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a control design for tracking of attitude and speed of an underactuated slender-hull unmanned underwater vehicle (UUV). The control design is based on Port-Hamiltonian theory. The target dynamics (desired dynamic response) is shaped with particular attention to the target mass matrix so that the influence of the unactuated dynamics on the controlled system is suppressed. This results in achievable dynamics independent of uncontrolled states. Throughout the design, insight of the physical phenomena involved is used to propose the desired target dynamics. The performance of the design is demonstrated through simulation with a high-fidelity model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There exists various suggestions for building a functional and a fault-tolerant large-scale quantum computer. Topological quantum computation is a more exotic suggestion, which makes use of the properties of quasiparticles manifest only in certain two-dimensional systems. These so called anyons exhibit topological degrees of freedom, which, in principle, can be used to execute quantum computation with intrinsic fault-tolerance. This feature is the main incentive to study topological quantum computation. The objective of this thesis is to provide an accessible introduction to the theory. In this thesis one has considered the theory of anyons arising in two-dimensional quantum mechanical systems, which are described by gauge theories based on so called quantum double symmetries. The quasiparticles are shown to exhibit interactions and carry quantum numbers, which are both of topological nature. Particularly, it is found that the addition of the quantum numbers is not unique, but that the fusion of the quasiparticles is described by a non-trivial fusion algebra. It is discussed how this property can be used to encode quantum information in a manner which is intrinsically protected from decoherence and how one could, in principle, perform quantum computation by braiding the quasiparticles. As an example of the presented general discussion, the particle spectrum and the fusion algebra of an anyon model based on the gauge group S_3 are explicitly derived. The fusion algebra is found to branch into multiple proper subalgebras and the simplest one of them is chosen as a model for an illustrative demonstration. The different steps of a topological quantum computation are outlined and the computational power of the model is assessed. It turns out that the chosen model is not universal for quantum computation. However, because the objective was a demonstration of the theory with explicit calculations, none of the other more complicated fusion subalgebras were considered. Studying their applicability for quantum computation could be a topic of further research.