970 resultados para Quasi-Nilpotent Operator
Resumo:
Let A be a unital dense algebra of linear mappings on a complex vector space X. Let φ = Σn i=1 Mai,bi be a locally quasi-nilpotent elementary operator of length n on A. We show that, if {a1, . . . , an} is locally linearly independent, then the local dimension of V (φ) = span{biaj : 1 ≤ i, j ≤ n} is at most n(n−1) 2 . If ldim V (φ) = n(n−1) 2 , then there exists a representation of φ as φ = Σn i=1 Mui,vi with viuj = 0 for i ≥ j. Moreover, we give a complete characterization of locally quasinilpotent elementary operators of length 3.
Resumo:
2000 Mathematics Subject Classification: 47A10, 47A12, 47A30, 47B10, 47B20, 47B37, 47B47, 47D50.
Resumo:
A Hilbert space operator is called universal (in the sense of Rota) if every operator on the Hilbert space is similar to a multiple of the restriction of the universal operator to one of its invariant subspaces. We exhibit an analytic Toeplitz operator whose adjoint is universal in the sense of Rota and commutes with a quasi-nilpotent injective compact operator with dense range. In articular, this new universal operator invites an approach to the Invariant Subspace Problem that uses properties of operators that commute with the universal operator.
Resumo:
We discuss some necessary and some sufficient conditions for an elementary operator x↦∑ni=1aixbi on a Banach algebra A to be spectrally bounded. In the case of length three, we obtain a complete characterisation when A acts irreducibly on a Banach space of dimension greater than three.
Resumo:
A Hilbert space operator is called universal (in the sense of Rota) if every operator on the Hilbert space is similar to a multiple of the restriction of the universal operator to one of its invariant subspaces. We exhibit an analytic Toeplitz operator whose adjoint is universal in the sense of Rota and commutes with a quasi-nilpotent injective compact operator with dense range. In particular, this new universal operator invites an approach to the Invariant Subspace Problem that uses properties of operators that commute with the universal operator.
Resumo:
By replacing ten-dimensional pure spinors with eleven-dimensional pure spinors, the formalism recently developed for covariantly quantizing the d = 10 superparticle and superstring is extended to the d = 11 superparticle and supermembrane. In this formalism, kappa symmetry is replaced by a BRST-like invariance using the nilpotent operator Q = ∮ λ αdα where dα is the worldvolume variable corresponding to the d = 11 spacetime supersymmetric derivative and λα is an SO(10, 1) pure spinor variable satisfying λΓcλ = 0 for c = 1 to 11. Super-Poincaré covariant unintegrated and integrated supermembrane vertex operators are explicitly constructed which are in the cohomology of Q. After double-dimensional reduction of the eleventh dimension, these vertex operators are related to type-IIA superstring vertex operators where Q = QL + QR is the sum of the left and right-moving type-IIA BRST operators and the eleventh component of the pure spinor constraint, λΓ 11λ = 0, replaces the bL 0 - b R 0 constraint of the closed superstring. A conjecture is made for the computation of M-theory scattering amplitudes using these supermembrane vertex operators. © SISSA/ISAS 2002.
Resumo:
In this paper we study Dirichlet convolution with a given arithmetical function f as a linear mapping 'f that sends a sequence (an) to (bn) where bn = Pdjn f(d)an=d.
We investigate when this is a bounded operator on l2 and ¯nd the operator norm. Of particular interest is the case f(n) = n¡® for its connection to the Riemann zeta
function on the line 1, 'f is bounded with k'f k = ³(®). For the unbounded case, we show that 'f : M2 ! M2 where M2 is the subset of l2 of multiplicative sequences, for many f 2 M2. Consequently, we study the `quasi'-norm sup kak = T a 2M2 k'fak kak
for large T, which measures the `size' of 'f on M2. For the f(n) = n¡® case, we show this quasi-norm has a striking resemblance to the conjectured maximal order of
j³(® + iT )j for ® > 12 .
Resumo:
In the long term, with development of skill, knowledge, exposure and confidence within the engineering profession, rigorous analysis techniques have the potential to become a reliable and far more comprehensive method for design and verification of the structural adequacy of OPS, write Nimal J Perera, David P Thambiratnam and Brian Clark. This paper explores the potential to enhance operator safety of self-propelled mechanical plant subjected to roll over and impact of falling objects using the non-linear and dynamic response simulation capabilities of analytical processes to supplement quasi-static testing methods prescribed in International and Australian Codes of Practice for bolt on Operator Protection Systems (OPS) that are post fitted. The paper is based on research work carried out by the authors at the Queensland University of Technology (QUT) over a period of three years by instrumentation of prototype tests, scale model tests in the laboratory and rigorous analysis using validated Finite Element (FE) Models. The FE codes used were ABAQUS for implicit analysis and LSDYNA for explicit analysis. The rigorous analysis and dynamic simulation technique described in the paper can be used to investigate the structural response due to accident scenarios such as multiple roll over, impact of multiple objects and combinations of such events and thereby enhance the safety and performance of Roll Over and Falling Object Protection Systems (ROPS and FOPS). The analytical techniques are based on sound engineering principles and well established practice for investigation of dynamic impact on all self propelled vehicles. They are used for many other similar applications where experimental techniques are not feasible.
Resumo:
There exists a remarkably close relationship between the operator algebra of the Dirac equation and the corresponding operators of the spinorial relativistic rotator (an indecomposable object lying on a mass-spin Regge trajectory). The analog of the Foldy-Wouthuysen transformation (more generally, the transformation between quasi-Newtonian and Minkowski coordinates) is constructed and explicit results are discussed for the spin and position operators. Zitterbewegung is shown to exist for a system having only positive energies.
Resumo:
The effects of lattice vibration on the system in which the electron is weakly coupled with bulk longitudinal optical phonons and strongly coupled with interface optical phonons in an infinite quantum well were studied by using Tokuda' linear-combination operator and a modified LLP variational method. The expressions for the effective mass of the polaron in a quantum well QW as functions of the well's width and temperature were derived. In particular, the law of the change of the vibration frequency of the polaron changing with well' s width and temperature are obtained. Numerical results of the effective mass and the vibration frequency of the polaron for KI/AgCl/Kl QW show that the vibration frequency and the effective mass of the polaron decrease with increasing well's width and temperature, but the contribution of the interaction between the electron and the different branches of phonons to the effective mass and the vibration frequency and the change of their variation with the well's width and temperature are greatly different.
Resumo:
Ausgangspunkt der Dissertation ist ein von V. Maz'ya entwickeltes Verfahren, eine gegebene Funktion f : Rn ! R durch eine Linearkombination fh radialer glatter exponentiell fallender Basisfunktionen zu approximieren, die im Gegensatz zu den Splines lediglich eine näherungsweise Zerlegung der Eins bilden und somit ein für h ! 0 nicht konvergentes Verfahren definieren. Dieses Verfahren wurde unter dem Namen Approximate Approximations bekannt. Es zeigt sich jedoch, dass diese fehlende Konvergenz für die Praxis nicht relevant ist, da der Fehler zwischen f und der Approximation fh über gewisse Parameter unterhalb der Maschinengenauigkeit heutiger Rechner eingestellt werden kann. Darüber hinaus besitzt das Verfahren große Vorteile bei der numerischen Lösung von Cauchy-Problemen der Form Lu = f mit einem geeigneten linearen partiellen Differentialoperator L im Rn. Approximiert man die rechte Seite f durch fh, so lassen sich in vielen Fällen explizite Formeln für die entsprechenden approximativen Volumenpotentiale uh angeben, die nur noch eine eindimensionale Integration (z.B. die Errorfunktion) enthalten. Zur numerischen Lösung von Randwertproblemen ist das von Maz'ya entwickelte Verfahren bisher noch nicht genutzt worden, mit Ausnahme heuristischer bzw. experimenteller Betrachtungen zur sogenannten Randpunktmethode. Hier setzt die Dissertation ein. Auf der Grundlage radialer Basisfunktionen wird ein neues Approximationsverfahren entwickelt, welches die Vorzüge der von Maz'ya für Cauchy-Probleme entwickelten Methode auf die numerische Lösung von Randwertproblemen überträgt. Dabei werden stellvertretend das innere Dirichlet-Problem für die Laplace-Gleichung und für die Stokes-Gleichungen im R2 behandelt, wobei für jeden der einzelnen Approximationsschritte Konvergenzuntersuchungen durchgeführt und Fehlerabschätzungen angegeben werden.
Resumo:
An interface between satellite retrievals and the incremental version of the four-dimensional variational assimilation scheme is developed, making full use of the information content of satellite measurements. In this paper, expressions for the function that calculates simulated observations from model states (called “observation operator”), together with its tangent linear version and adjoint, are derived. Results from our work can be used for implementing a quasi-optimal assimilation of satellite retrievals (e.g., of atmospheric trace gases) in operational meteorological centres.
Resumo:
A method to solve a quasi-geostrophic two-layer model including the variation of static stability is presented. The divergent part of the wind is incorporated by means of an iterative procedure. The procedure is rather fast and the time of computation is only 60–70% longer than for the usual two-layer model. The method of solution is justified by the conservation of the difference between the gross static stability and the kinetic energy. To eliminate the side-boundary conditions the experiments have been performed on a zonal channel model. The investigation falls mainly into three parts: The first part (section 5) contains a discussion of the significance of some physically inconsistent approximations. It is shown that physical inconsistencies are rather serious and for these inconsistent models which were studied the total kinetic energy increased faster than the gross static stability. In the next part (section 6) we are studying the effect of a Jacobian difference operator which conserves the total kinetic energy. The use of this operator in two-layer models will give a slight improvement but probably does not have any practical use in short periodic forecasts. It is also shown that the energy-conservative operator will change the wave-speed in an erroneous way if the wave-number or the grid-length is large in the meridional direction. In the final part (section 7) we investigate the behaviour of baroclinic waves for some different initial states and for two energy-consistent models, one with constant and one with variable static stability. According to the linear theory the waves adjust rather rapidly in such a way that the temperature wave will lag behind the pressure wave independent of the initial configuration. Thus, both models give rise to a baroclinic development even if the initial state is quasi-barotropic. The effect of the variation of static stability is very small, qualitative differences in the development are only observed during the first 12 hours. For an amplifying wave we will get a stabilization over the troughs and an instabilization over the ridges.
Resumo:
We write the BRST operator of the N = 1 superstring as, Q = e-R(1/2πiφdzγ2b)eR where y and b are super-reparameterization ghosts. This provides a trivial proof that Q is nilpotent. © 1999 Published by Elsevier Science B.V. All rights reserved.
Resumo:
This work deals with some classes of linear second order partial differential operators with non-negative characteristic form and underlying non- Euclidean structures. These structures are determined by families of locally Lipschitz-continuous vector fields in RN, generating metric spaces of Carnot- Carath´eodory type. The Carnot-Carath´eodory metric related to a family {Xj}j=1,...,m is the control distance obtained by minimizing the time needed to go from two points along piecewise trajectories of vector fields. We are mainly interested in the causes in which a Sobolev-type inequality holds with respect to the X-gradient, and/or the X-control distance is Doubling with respect to the Lebesgue measure in RN. This study is divided into three parts (each corresponding to a chapter), and the subject of each one is a class of operators that includes the class of the subsequent one. In the first chapter, after recalling “X-ellipticity” and related concepts introduced by Kogoj and Lanconelli in [KL00], we show a Maximum Principle for linear second order differential operators for which we only assume a Sobolev-type inequality together with a lower terms summability. Adding some crucial hypotheses on measure and on vector fields (Doubling property and Poincar´e inequality), we will be able to obtain some Liouville-type results. This chapter is based on the paper [GL03] by Guti´errez and Lanconelli. In the second chapter we treat some ultraparabolic equations on Lie groups. In this case RN is the support of a Lie group, and moreover we require that vector fields satisfy left invariance. After recalling some results of Cinti [Cin07] about this class of operators and associated potential theory, we prove a scalar convexity for mean-value operators of L-subharmonic functions, where L is our differential operator. In the third chapter we prove a necessary and sufficient condition of regularity, for boundary points, for Dirichlet problem on an open subset of RN related to sub-Laplacian. On a Carnot group we give the essential background for this type of operator, and introduce the notion of “quasi-boundedness”. Then we show the strict relationship between this notion, the fundamental solution of the given operator, and the regularity of the boundary points.