981 resultados para Quantum States


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The von Neumann entropy of a generic quantum state is not unique unless the state can be uniquely decomposed as a sum of extremal or pure states. As pointed out to us by Sorkin, this happens if the GNS representation (of the algebra of observables in some quantum state) is reducible, and some representations in the decomposition occur with non-trivial degeneracy. This non-unique entropy can occur at zero temperature. We will argue elsewhere in detail that the degeneracies in the GNS representation can be interpreted as an emergent broken gauge symmetry, and play an important role in the analysis of emergent entropy due to non-Abelian anomalies. Finally, we establish the analogue of an H-theorem for this entropy by showing that its evolution is Markovian, determined by a stochastic matrix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis I theoretically study quantum states of ultracold atoms. The majority of the Chapters focus on engineering specific quantum states of single atoms with high fidelity in experimentally realistic systems. In the sixth Chapter, I investigate the stability and dynamics of new multidimensional solitonic states that can be created in inhomogeneous atomic Bose-Einstein condensates. In Chapter three I present two papers in which I demonstrate how the coherent tunnelling by adiabatic passage (CTAP) process can be implemented in an experimentally realistic atom chip system, to coherently transfer the centre-of-mass of a single atom between two spatially distinct magnetic waveguides. In these works I also utilise GPU (Graphics Processing Unit) computing which offers a significant performance increase in the numerical simulation of the Schrödinger equation. In Chapter four I investigate the CTAP process for a linear arrangement of radio frequency traps where the centre-of-mass of both, single atoms and clouds of interacting atoms, can be coherently controlled. In Chapter five I present a theoretical study of adiabatic radio frequency potentials where I use Floquet theory to more accurately model situations where frequencies are close and/or field amplitudes are large. I also show how one can create highly versatile 2D adiabatic radio frequency potentials using multiple radio frequency fields with arbitrary field orientation and demonstrate their utility by simulating the creation of ring vortex solitons. In the sixth Chapter I discuss the stability and dynamics of a family of multidimensional solitonic states created in harmonically confined Bose-Einstein condensates. I demonstrate that these solitonic states have interesting dynamical instabilities, where a continuous collapse and revival of the initial state occurs. Through Bogoliubov analysis, I determine the modes responsible for the observed instabilities of each solitonic state and also extract information related to the time at which instability can be observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantum discord quantifies nonclassical correlations in a quantum system including those not captured by entanglement. Thus, only states with zero discord exhibit strictly classical correlations. We prove that these states are negligible in the whole Hilbert space: typically a state picked out at random has positive discord and, given a state with zero discord, a generic arbitrarily small perturbation drives it to a positive-discord state. These results hold for any Hilbert-space dimension and have direct implications for quantum computation and for the foundations of the theory of open systems. In addition, we provide a simple necessary criterion for zero quantum discord. Finally, we show that, for almost all positive-discord states, an arbitrary Markovian evolution cannot lead to a sudden, permanent vanishing of discord.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The information encoded in a quantum system is generally spoiled by the influences of its environment, leading to a transition from pure to mixed states. Reducing the mixedness of a state is a fundamental step in the quest for a feasible implementation of quantum technologies. Here we show that it is impossible to transfer part of such mixedness to a trash system without losing some of the initial information. Such loss is lower-bounded by a value determined by the properties of the initial state to purify. We discuss this interesting phenomenon and its consequences for general quantum information theory, linking it to the information theoretical primitive embodied by the quantum state-merging protocol and to the behaviour of general quantum correlations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We provide necessary and sufficient conditions for states to have an arbitrarily small uncertainty product of the azimuthal angle phi and its canonical moment L(z). We illustrate our results with analytical examples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By considering a network of dissipative quantum harmonic oscillators, we deduce and analyse the optimum topologies which are able to store quantum superposition states, protecting them from decoherence, for the longest period of time. The storage is made dynamically, in that the states to be protected evolve through the network before being retrieved back in the oscillator where they were prepared. The decoherence time during the dynamic storage process is computed and we demonstrate that it is proportional to the number of oscillators in the network for a particular regime of parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we identify the set of time-dependent pure states building the statistical mixture to which a system, initially in a pure state, is driven by the reservoir. This set of time-dependent pure states, composing what we term a pure basis, are those that diagonalize the reduced density operator of the system. Next, we show that the evolution of the pure-basis states reveals an interesting phenomenon as the system, after decoherence, evolves toward the equilibrium: the spontaneous recoherence of quantum states. Around our defined recoherence time, the statistical mixture associated with a special kind of initial states termed even-symmetric, spontaneously undergoes a recoherence process, by which the initial state of the system emerges from the mixture except for its reduced excitation drained into the reservoir. This phenomenon reveals that the reservoir only shuffle the original information carried out by the initial state of the system instead of erasing it. Moreover, as the spontaneously recohered state occurs only for asymptotic time, we also present a protocol to extract it from the mixture through specific projective measurements. The password to retrieve the original information stems is the knowledge of both the initial state itself and the associated pure basis. A definition of the decoherence time of an N-state superposition is also presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Undergraduate students often have the misconception that molecules have fixed, unchanging bond lengths. This article discusses how linear-molecule rotational band spacings in infrared spectroscopy can be used as a qualitative, visual demonstration of the elongation of average bond lengths on vibrational excitation. The method does not depend on a detailed mathematical analysis of the spectra. In UV–vis spectroscopy, the rotational band spacings give rise to distinctive linear-molecule rotational contours, which easily show whether the average bond length has increased or decreased. The method is based on a spreadsheet simulation of the vibration–rotation or rovibronic (electronic–vibration–rotation) spectrum and is applied to hydrogen chloride IR, iodine UV–vis, and nitrogen UV–vis spectra in this article.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discuss the matching of the BPS part of the spectrum for a (super) membrane, which gives the possibility of getting the membrane's results via string calculations. In the small coupling limit of M theory the entropy of the system coincides with the standard entropy of type IIB string theory (including the logarithmic correction term). The thermodynamic behavior at a large coupling constant is computed by considering M theory on a manifold with a topology T-2 x R-9. We argue that the finite temperature partition functions (brane Laurent series for p not equal 1) associated with the BPS p-brane spectrum can be analytically continued to well-defined functionals. It means that a finite temperature can be introduced in brane theory, which behaves like finite temperature field theory. In the limit p --> 0 (point particle limit) it gives rise to the standard behavior of thermodynamic quantities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Questo lavoro di tesi si inserisce nel recente filone di ricerca che ha lo scopo di studiare le strutture della Meccanica quantistica facendo impiego della geometria differenziale. In particolare, lo scopo della tesi è analizzare la geometria dello spazio degli stati quantistici puri e misti. Dopo aver riportato i risultati noti relativi a questo argomento, vengono calcolati esplicitamente il tensore metrico e la forma simplettica come parte reale e parte immaginaria del tensore di Fisher per le matrici densità 2×2 e 3×3. Quest’ultimo altro non é che la generalizzazione di uno strumento molto usato in Teoria dell’Informazione: l’Informazione di Fisher. Dal tensore di Fisher si può ottenere un tensore metrico non solo sulle orbite generate dall'azione del gruppo unitario ma anche su percorsi generati da trasformazioni non unitarie. Questo fatto apre la strada allo studio di tutti i percorsi possibili all'interno dello spazio delle matrici densità, che in questa tesi viene esplicitato per le matrici 2×2 e affrontato utilizzando il formalismo degli operatori di Kraus. Proprio grazie a questo formalismo viene introdotto il concetto di semi-gruppo dinamico che riflette la non invertibilità di evoluzioni non unitarie causate dall'interazione tra il sistema sotto esame e l’ambiente. Viene infine presentato uno schema per intraprendere la stessa analisi sulle matrici densità 3×3, e messe in evidenza le differenze con il caso 2×2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

What quantum states are possible energy eigenstates of a many-body Hamiltonian? Suppose the Hamiltonian is nontrivial, i.e., not a multiple of the identity, and L local, in the sense of containing interaction terms involving at most L bodies, for some fixed L. We construct quantum states psi which are far away from all the eigenstates E of any nontrivial L-local Hamiltonian, in the sense that parallel topsi-Eparallel to is greater than some constant lower bound, independent of the form of the Hamiltonian.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Entangled quantum states can be given a separable decomposition if we relax the restriction that the local operators be quantum states. Motivated by the construction of classical simulations and local hidden variable models, we construct `smallest' local sets of operators that achieve this. In other words, given an arbitrary bipartite quantum state we construct convex sets of local operators that allow for a separable decomposition, but that cannot be made smaller while continuing to do so. We then consider two further variants of the problem where the local state spaces are required to contain the local quantum states, and obtain solutions for a variety of cases including a region of pure states around the maximally entangled state. The methods involve calculating certain forms of cross norm. Two of the variants of the problem have a strong relationship to theorems on ensemble decompositions of positive operators, and our results thereby give those theorems an added interpretation. The results generalise those obtained in our previous work on this topic [New J. Phys. 17, 093047 (2015)].