11 resultados para Quantum States

em CaltechTHESIS


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this thesis, I will discuss how information-theoretic arguments can be used to produce sharp bounds in the studies of quantum many-body systems. The main advantage of this approach, as opposed to the conventional field-theoretic argument, is that it depends very little on the precise form of the Hamiltonian. The main idea behind this thesis lies on a number of results concerning the structure of quantum states that are conditionally independent. Depending on the application, some of these statements are generalized to quantum states that are approximately conditionally independent. These structures can be readily used in the studies of gapped quantum many-body systems, especially for the ones in two spatial dimensions. A number of rigorous results are derived, including (i) a universal upper bound for a maximal number of topologically protected states that is expressed in terms of the topological entanglement entropy, (ii) a first-order perturbation bound for the topological entanglement entropy that decays superpolynomially with the size of the subsystem, and (iii) a correlation bound between an arbitrary local operator and a topological operator constructed from a set of local reduced density matrices. I also introduce exactly solvable models supported on a three-dimensional lattice that can be used as a reliable quantum memory.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The theories of relativity and quantum mechanics, the two most important physics discoveries of the 20th century, not only revolutionized our understanding of the nature of space-time and the way matter exists and interacts, but also became the building blocks of what we currently know as modern physics. My thesis studies both subjects in great depths --- this intersection takes place in gravitational-wave physics.

Gravitational waves are "ripples of space-time", long predicted by general relativity. Although indirect evidence of gravitational waves has been discovered from observations of binary pulsars, direct detection of these waves is still actively being pursued. An international array of laser interferometer gravitational-wave detectors has been constructed in the past decade, and a first generation of these detectors has taken several years of data without a discovery. At this moment, these detectors are being upgraded into second-generation configurations, which will have ten times better sensitivity. Kilogram-scale test masses of these detectors, highly isolated from the environment, are probed continuously by photons. The sensitivity of such a quantum measurement can often be limited by the Heisenberg Uncertainty Principle, and during such a measurement, the test masses can be viewed as evolving through a sequence of nearly pure quantum states.

The first part of this thesis (Chapter 2) concerns how to minimize the adverse effect of thermal fluctuations on the sensitivity of advanced gravitational detectors, thereby making them closer to being quantum-limited. My colleagues and I present a detailed analysis of coating thermal noise in advanced gravitational-wave detectors, which is the dominant noise source of Advanced LIGO in the middle of the detection frequency band. We identified the two elastic loss angles, clarified the different components of the coating Brownian noise, and obtained their cross spectral densities.

The second part of this thesis (Chapters 3-7) concerns formulating experimental concepts and analyzing experimental results that demonstrate the quantum mechanical behavior of macroscopic objects - as well as developing theoretical tools for analyzing quantum measurement processes. In Chapter 3, we study the open quantum dynamics of optomechanical experiments in which a single photon strongly influences the quantum state of a mechanical object. We also explain how to engineer the mechanical oscillator's quantum state by modifying the single photon's wave function.

In Chapters 4-5, we build theoretical tools for analyzing the so-called "non-Markovian" quantum measurement processes. Chapter 4 establishes a mathematical formalism that describes the evolution of a quantum system (the plant), which is coupled to a non-Markovian bath (i.e., one with a memory) while at the same time being under continuous quantum measurement (by the probe field). This aims at providing a general framework for analyzing a large class of non-Markovian measurement processes. Chapter 5 develops a way of characterizing the non-Markovianity of a bath (i.e.,whether and to what extent the bath remembers information about the plant) by perturbing the plant and watching for changes in the its subsequent evolution. Chapter 6 re-analyzes a recent measurement of a mechanical oscillator's zero-point fluctuations, revealing nontrivial correlation between the measurement device's sensing noise and the quantum rack-action noise.

Chapter 7 describes a model in which gravity is classical and matter motions are quantized, elaborating how the quantum motions of matter are affected by the fact that gravity is classical. It offers an experimentally plausible way to test this model (hence the nature of gravity) by measuring the center-of-mass motion of a macroscopic object.

The most promising gravitational waves for direct detection are those emitted from highly energetic astrophysical processes, sometimes involving black holes - a type of object predicted by general relativity whose properties depend highly on the strong-field regime of the theory. Although black holes have been inferred to exist at centers of galaxies and in certain so-called X-ray binary objects, detecting gravitational waves emitted by systems containing black holes will offer a much more direct way of observing black holes, providing unprecedented details of space-time geometry in the black-holes' strong-field region.

The third part of this thesis (Chapters 8-11) studies black-hole physics in connection with gravitational-wave detection.

Chapter 8 applies black hole perturbation theory to model the dynamics of a light compact object orbiting around a massive central Schwarzschild black hole. In this chapter, we present a Hamiltonian formalism in which the low-mass object and the metric perturbations of the background spacetime are jointly evolved. Chapter 9 uses WKB techniques to analyze oscillation modes (quasi-normal modes or QNMs) of spinning black holes. We obtain analytical approximations to the spectrum of the weakly-damped QNMs, with relative error O(1/L^2), and connect these frequencies to geometrical features of spherical photon orbits in Kerr spacetime. Chapter 11 focuses mainly on near-extremal Kerr black holes, we discuss a bifurcation in their QNM spectra for certain ranges of (l,m) (the angular quantum numbers) as a/M → 1. With tools prepared in Chapter 9 and 10, in Chapter 11 we obtain an analytical approximate for the scalar Green function in Kerr spacetime.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Researchers have spent decades refining and improving their methods for fabricating smaller, finer-tuned, higher-quality nanoscale optical elements with the goal of making more sensitive and accurate measurements of the world around them using optics. Quantum optics has been a well-established tool of choice in making these increasingly sensitive measurements which have repeatedly pushed the limits on the accuracy of measurement set forth by quantum mechanics. A recent development in quantum optics has been a creative integration of robust, high-quality, and well-established macroscopic experimental systems with highly-engineerable on-chip nanoscale oscillators fabricated in cleanrooms. However, merging large systems with nanoscale oscillators often require them to have extremely high aspect-ratios, which make them extremely delicate and difficult to fabricate with an "experimentally reasonable" repeatability, yield and high quality. In this work we give an overview of our research, which focused on microscopic oscillators which are coupled with macroscopic optical cavities towards the goal of cooling them to their motional ground state in room temperature environments. The quality factor of a mechanical resonator is an important figure of merit for various sensing applications and observing quantum behavior. We demonstrated a technique for pushing the quality factor of a micromechanical resonator beyond conventional material and fabrication limits by using an optical field to stiffen and trap a particular motional mode of a nanoscale oscillator. Optical forces increase the oscillation frequency by storing most of the mechanical energy in a nearly loss-less optical potential, thereby strongly diluting the effects of material dissipation. By placing a 130 nm thick SiO2 pendulum in an optical standing wave, we achieve an increase in the pendulum center-of-mass frequency from 6.2 to 145 kHz. The corresponding quality factor increases 50-fold from its intrinsic value to a final value of Qm = 5.8(1.1) x 105, representing more than an order of magnitude improvement over the conventional limits of SiO2 for a pendulum geometry. Our technique may enable new opportunities for mechanical sensing and facilitate observations of quantum behavior in this class of mechanical systems. We then give a detailed overview of the techniques used to produce high-aspect-ratio nanostructures with applications in a wide range of quantum optics experiments. The ability to fabricate such nanodevices with high precision opens the door to a vast array of experiments which integrate macroscopic optical setups with lithographically engineered nanodevices. Coupled with atom-trapping experiments in the Kimble Lab, we use these techniques to realize a new waveguide chip designed to address ultra-cold atoms along lithographically patterned nanobeams which have large atom-photon coupling and near 4π Steradian optical access for cooling and trapping atoms. We describe a fully integrated and scalable design where cold atoms are spatially overlapped with the nanostring cavities in order to observe a resonant optical depth of d0 ≈ 0.15. The nanodevice illuminates new possibilities for integrating atoms into photonic circuits and engineering quantum states of atoms and light on a microscopic scale. We then describe our work with superconducting microwave resonators coupled to a phononic cavity towards the goal of building an integrated device for quantum-limited microwave-to-optical wavelength conversion. We give an overview of our characterizations of several types of substrates for fabricating a low-loss high-frequency electromechanical system. We describe our electromechanical system fabricated on a Si3N4 membrane which consists of a 12 GHz superconducting LC resonator coupled capacitively to the high frequency localized modes of a phononic nanobeam. Using our suspended membrane geometry we isolate our system from substrates with significant loss tangents, drastically reducing the parasitic capacitance of our superconducting circuit to ≈ 2.5$ fF. This opens up a number of possibilities in making a new class of low-loss high-frequency electromechanics with relatively large electromechanical coupling. We present our substrate studies, fabrication methods, and device characterization.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This thesis presents studies of the role of disorder in non-equilibrium quantum systems. The quantum states relevant to dynamics in these systems are very different from the ground state of the Hamiltonian. Two distinct systems are studied, (i) periodically driven Hamiltonians in two dimensions, and (ii) electrons in a one-dimensional lattice with power-law decaying hopping amplitudes. In the first system, the novel phases that are induced from the interplay of periodic driving, topology and disorder are studied. In the second system, the Anderson transition in all the eigenstates of the Hamiltonian are studied, as a function of the power-law exponent of the hopping amplitude.

In periodically driven systems the study focuses on the effect of disorder in the nature of the topology of the steady states. First, we investigate the robustness to disorder of Floquet topological insulators (FTIs) occurring in semiconductor quantum wells. Such FTIs are generated by resonantly driving a transition between the valence and conduction band. We show that when disorder is added, the topological nature of such FTIs persists as long as there is a gap at the resonant quasienergy. For strong enough disorder, this gap closes and all the states become localized as the system undergoes a transition to a trivial insulator.

Interestingly, the effects of disorder are not necessarily adverse, disorder can also induce a transition from a trivial to a topological system, thereby establishing a Floquet Topological Anderson Insulator (FTAI). Such a state would be a dynamical realization of the topological Anderson insulator. We identify the conditions on the driving field necessary for observing such a transition. We realize such a disorder induced topological Floquet spectrum in the driven honeycomb lattice and quantum well models.

Finally, we show that two-dimensional periodically driven quantum systems with spatial disorder admit a unique topological phase, which we call the anomalous Floquet-Anderson insulator (AFAI). The AFAI is characterized by a quasienergy spectrum featuring chiral edge modes coexisting with a fully localized bulk. Such a spectrum is impossible for a time-independent, local Hamiltonian. These unique characteristics of the AFAI give rise to a new topologically protected nonequilibrium transport phenomenon: quantized, yet nonadiabatic, charge pumping. We identify the topological invariants that distinguish the AFAI from a trivial, fully localized phase, and show that the two phases are separated by a phase transition.

The thesis also present the study of disordered systems using Wegner's Flow equations. The Flow Equation Method was proposed as a technique for studying excited states in an interacting system in one dimension. We apply this method to a one-dimensional tight binding problem with power-law decaying hoppings. This model presents a transition as a function of the exponent of the decay. It is shown that the the entire phase diagram, i.e. the delocalized, critical and localized phases in these systems can be studied using this technique. Based on this technique, we develop a strong-bond renormalization group that procedure where we solve the Flow Equations iteratively. This renormalization group approach provides a new framework to study the transition in this system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis addresses whether it is possible to build a robust memory device for quantum information. Many schemes for fault-tolerant quantum information processing have been developed so far, one of which, called topological quantum computation, makes use of degrees of freedom that are inherently insensitive to local errors. However, this scheme is not so reliable against thermal errors. Other fault-tolerant schemes achieve better reliability through active error correction, but incur a substantial overhead cost. Thus, it is of practical importance and theoretical interest to design and assess fault-tolerant schemes that work well at finite temperature without active error correction.

In this thesis, a three-dimensional gapped lattice spin model is found which demonstrates for the first time that a reliable quantum memory at finite temperature is possible, at least to some extent. When quantum information is encoded into a highly entangled ground state of this model and subjected to thermal errors, the errors remain easily correctable for a long time without any active intervention, because a macroscopic energy barrier keeps the errors well localized. As a result, stored quantum information can be retrieved faithfully for a memory time which grows exponentially with the square of the inverse temperature. In contrast, for previously known types of topological quantum storage in three or fewer spatial dimensions the memory time scales exponentially with the inverse temperature, rather than its square.

This spin model exhibits a previously unexpected topological quantum order, in which ground states are locally indistinguishable, pointlike excitations are immobile, and the immobility is not affected by small perturbations of the Hamiltonian. The degeneracy of the ground state, though also insensitive to perturbations, is a complicated number-theoretic function of the system size, and the system bifurcates into multiple noninteracting copies of itself under real-space renormalization group transformations. The degeneracy, the excitations, and the renormalization group flow can be analyzed using a framework that exploits the spin model's symmetry and some associated free resolutions of modules over polynomial algebras.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantum computing offers powerful new techniques for speeding up the calculation of many classically intractable problems. Quantum algorithms can allow for the efficient simulation of physical systems, with applications to basic research, chemical modeling, and drug discovery; other algorithms have important implications for cryptography and internet security.

At the same time, building a quantum computer is a daunting task, requiring the coherent manipulation of systems with many quantum degrees of freedom while preventing environmental noise from interacting too strongly with the system. Fortunately, we know that, under reasonable assumptions, we can use the techniques of quantum error correction and fault tolerance to achieve an arbitrary reduction in the noise level.

In this thesis, we look at how additional information about the structure of noise, or "noise bias," can improve or alter the performance of techniques in quantum error correction and fault tolerance. In Chapter 2, we explore the possibility of designing certain quantum gates to be extremely robust with respect to errors in their operation. This naturally leads to structured noise where certain gates can be implemented in a protected manner, allowing the user to focus their protection on the noisier unprotected operations.

In Chapter 3, we examine how to tailor error-correcting codes and fault-tolerant quantum circuits in the presence of dephasing biased noise, where dephasing errors are far more common than bit-flip errors. By using an appropriately asymmetric code, we demonstrate the ability to improve the amount of error reduction and decrease the physical resources required for error correction.

In Chapter 4, we analyze a variety of protocols for distilling magic states, which enable universal quantum computation, in the presence of faulty Clifford operations. Here again there is a hierarchy of noise levels, with a fixed error rate for faulty gates, and a second rate for errors in the distilled states which decreases as the states are distilled to better quality. The interplay of of these different rates sets limits on the achievable distillation and how quickly states converge to that limit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mechanical resonators are the most basic and ubiquitous physical systems known. In on-chip form, they are used to process high frequency signals in every cell phone, television, and laptop. They have also been in the last few decades in different shapes and forms, a critical part of progress in quantum information sciences with kilogram-scale mirrors for gravitational wave detection measuring motion at its quantum limits, and the motion of single ions being used to link qubits for quantum computation.

Optomechanics is a field primarily concerned with coupling light to the motion of mechanical structures. This thesis contains descriptions of recent work with mechanical systems in the megahertz to gigahertz frequency range, formed by nanofabricating novel photonic/phononic structures on a silicon chip. These structures are designed to have both optical and mechanical resonances, and laser light is used to address and manipulate their motional degrees of freedom through radiation pressure forces. We laser cool these mechanical resonators to their ground states, and observe for the first time the quantum zero-point motion of a nanomechanical resonator. Conversely, we show that engineered mechanical resonances drastically modify the optical response of our structures, creating large effective optical nonlinearities not present in bulk silicon. We experimentally demonstrate aspects of these nonlinearities by proposing and observing ``electromagnetically induced transparency'' and light slowed down to 6 m/s, as well as wavelength conversion, and generation of nonclassical optical radiation. Finally, the application of optomechanics to longstanding problems in quantum and classical communications are proposed and investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the first part I perform Hartree-Fock calculations to show that quantum dots (i.e., two-dimensional systems of up to twenty interacting electrons in an external parabolic potential) undergo a gradual transition to a spin-polarized Wigner crystal with increasing magnetic field strength. The phase diagram and ground state energies have been determined. I tried to improve the ground state of the Wigner crystal by introducing a Jastrow ansatz for the wave function and performing a variational Monte Carlo calculation. The existence of so called magic numbers was also investigated. Finally, I also calculated the heat capacity associated with the rotational degree of freedom of deformed many-body states and suggest an experimental method to detect Wigner crystals.

The second part of the thesis investigates infinite nuclear matter on a cubic lattice. The exact thermal formalism describes nucleons with a Hamiltonian that accommodates on-site and next-neighbor parts of the central, spin-exchange and isospin-exchange interaction. Using auxiliary field Monte Carlo methods, I show that energy and basic saturation properties of nuclear matter can be reproduced. A first order phase transition from an uncorrelated Fermi gas to a clustered system is observed by computing mechanical and thermodynamical quantities such as compressibility, heat capacity, entropy and grand potential. The structure of the clusters is investigated with the help two-body correlations. I compare symmetry energy and first sound velocities with literature and find reasonable agreement. I also calculate the energy of pure neutron matter and search for a similar phase transition, but the survey is restricted by the infamous Monte Carlo sign problem. Also, a regularization scheme to extract potential parameters from scattering lengths and effective ranges is investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chapter I

Theories for organic donor-acceptor (DA) complexes in solution and in the solid state are reviewed, and compared with the available experimental data. As shown by McConnell et al. (Proc. Natl. Acad. Sci. U.S., 53, 46-50 (1965)), the DA crystals fall into two classes, the holoionic class with a fully or almost fully ionic ground state, and the nonionic class with little or no ionic character. If the total lattice binding energy 2ε1 (per DA pair) gained in ionizing a DA lattice exceeds the cost 2εo of ionizing each DA pair, ε1 + εo less than 0, then the lattice is holoionic. The charge-transfer (CT) band in crystals and in solution can be explained, following Mulliken, by a second-order mixing of states, or by any theory that makes the CT transition strongly allowed, and yet due to a small change in the ground state of the non-interacting components D and A (or D+ and A-). The magnetic properties of the DA crystals are discussed.

Chapter II

A computer program, EWALD, was written to calculate by the Ewald fast-convergence method the crystal Coulomb binding energy EC due to classical monopole-monopole interactions for crystals of any symmetry. The precision of EC values obtained is high: the uncertainties, estimated by the effect on EC of changing the Ewald convergence parameter η, ranged from ± 0.00002 eV to ± 0.01 eV in the worst case. The charge distribution for organic ions was idealized as fractional point charges localized at the crystallographic atomic positions: these charges were chosen from available theoretical and experimental estimates. The uncertainty in EC due to different charge distribution models is typically ± 0.1 eV (± 3%): thus, even the simple Hückel model can give decent results.

EC for Wurster's Blue Perchl orate is -4.1 eV/molecule: the crystal is stable under the binding provided by direct Coulomb interactions. EC for N-Methylphenazinium Tetracyanoquino- dimethanide is 0.1 eV: exchange Coulomb interactions, which cannot be estimated classically, must provide the necessary binding.

EWALD was also used to test the McConnell classification of DA crystals. For the holoionic (1:1)-(N,N,N',N'-Tetramethyl-para- phenylenediamine: 7,7,8,8-Tetracyanoquinodimethan) EC = -4.0 eV while 2εo = 4.65 eV: clearly, exchange forces must provide the balance. For the holoionic (1:1)-(N,N,N',N'-Tetramethyl-para- phenylenediamine:para-Chloranil) EC = -4.4 eV, while 2εo = 5.0 eV: again EC falls short of 2ε1. As a Gedankenexperiment, two nonionic crystals were assumed to be ionized: for (1:1)-(Hexamethyl- benzene:para-Chloranil) EC = -4.5 eV, 2εo = 6.6 eV; for (1:1)- (Napthalene:Tetracyanoethylene) EC = -4.3 eV, 2εo = 6.5 eV. Thus, exchange energies in these nonionic crystals must not exceed 1 eV.

Chapter III

A rapid-convergence quantum-mechanical formalism is derived to calculate the electronic energy of an arbitrary molecular (or molecular-ion) crystal: this provides estimates of crystal binding energies which include the exchange Coulomb inter- actions. Previously obtained LCAO-MO wavefunctions for the isolated molecule(s) ("unit cell spin-orbitals") provide the starting-point. Bloch's theorem is used to construct "crystal spin-orbitals". Overlap between the unit cell orbitals localized in different unit cells is neglected, or is eliminated by Löwdin orthogonalization. Then simple formulas for the total kinetic energy Q^(XT)_λ, nuclear attraction [λ/λ]XT, direct Coulomb [λλ/λ'λ']XT and exchange Coulomb [λλ'/λ'λ]XT integrals are obtained, and direct-space brute-force expansions in atomic wavefunctions are given. Fourier series are obtained for [λ/λ]XT, [λλ/λ'λ']XT, and [λλ/λ'λ]XT with the help of the convolution theorem; the Fourier coefficients require the evaluation of Silverstone's two-center Fourier transform integrals. If the short-range interactions are calculated by brute-force integrations in direct space, and the long-range effects are summed in Fourier space, then rapid convergence is possible for [λ/λ]XT, [λλ/λ'λ']XT and [λλ'/λ'λ]XT. This is achieved, as in the Ewald method, by modifying each atomic wavefunction by a "Gaussian convergence acceleration factor", and evaluating separately in direct and in Fourier space appropriate portions of [λ/λ]XT, etc., where some of the portions contain the Gaussian factor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a theoretical study of electronic states in topological insulators with impurities. Chiral edge states in 2d topological insulators and helical surface states in 3d topological insulators show a robust transport against nonmagnetic impurities. Such a nontrivial character inspired physicists to come up with applications such as spintronic devices [1], thermoelectric materials [2], photovoltaics [3], and quantum computation [4]. Not only has it provided new opportunities from a practical point of view, but its theoretical study has deepened the understanding of the topological nature of condensed matter systems. However, experimental realizations of topological insulators have been challenging. For example, a 2d topological insulator fabricated in a HeTe quantum well structure by Konig et al. [5] shows a longitudinal conductance which is not well quantized and varies with temperature. 3d topological insulators such as Bi2Se3 and Bi2Te3 exhibit not only a signature of surface states, but they also show a bulk conduction [6]. The series of experiments motivated us to study the effects of impurities and coexisting bulk Fermi surface in topological insulators. We first address a single impurity problem in a topological insulator using a semiclassical approach. Then we study the conductance behavior of a disordered topological-metal strip where bulk modes are associated with the transport of edge modes via impurity scattering. We verify that the conduction through a chiral edge channel retains its topological signature, and we discovered that the transmission can be succinctly expressed in a closed form as a ratio of determinants of the bulk Green's function and impurity potentials. We further study the transport of 1d systems which can be decomposed in terms of chiral modes. Lastly, the surface impurity effect on the local density of surface states over layers into the bulk is studied between weak and strong disorder strength limits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-classical properties and quantum interference (QI) in two-photon excitation of a three level atom (|1〉), |2〉, |3〉) in a ladder configuration, illuminated by multiple fields in non-classical (squeezed) and/or classical (coherent) states, is studied. Fundamentally new effects associated with quantum correlations in the squeezed fields and QI due to multiple excitation pathways have been observed. Theoretical studies and extrapolations of these findings have revealed possible applications which are far beyond any current capabilities, including ultrafast nonlinear mixing, ultrafast homodyne detection and frequency metrology. The atom used throughout the experiments was Cesium, which was magneto-optically trapped in a vapor cell to produce a Doppler-free sample. For the first part of the work the |1〉 → |2〉 → |3〉 transition (corresponding to the 6S1/2F = 4 → 6P3/2F' = 5 → 6D5/2F" = 6 transition) was excited by using the quantum-correlated signal (Ɛs) and idler (Ɛi) output fields of a subthreshold non-degenerate optical parametric oscillator, which was tuned so that the signal and idler fields were resonant with the |1〉 → |2〉 and |2〉 → |3〉 transitions, respectively. In contrast to excitation with classical fields for which the excitation rate as a function of intensity has always an exponent greater than or equal to two, excitation with squeezed-fields has been theoretically predicted to have an exponent that approaches unity for small enough intensities. This was verified experimentally by probing the exponent down to a slope of 1.3, demonstrating for the first time a purely non-classical effect associated with the interaction of squeezed fields and atoms. In the second part excitation of the two-photon transition by three phase coherent fields Ɛ1 , Ɛ2 and Ɛ0, resonant with the dipole |1〉 → |2〉 and |2〉 → |3〉 and quadrupole |1〉 → |3〉 transitions, respectively, is studied. QI in the excited state population is observed due to two alternative excitation pathways. This is equivalent to nonlinear mixing of the three excitation fields by the atom. Realizing that in the experiment the three fields are spaced in frequency over a range of 25 THz, and extending this scheme to other energy triplets and atoms, leads to the discovery that ranges up to 100's of THz can be bridged in a single mixing step. Motivated by these results, a master equation model has been developed for the system and its properties have been extensively studied.