990 resultados para Pulsed electric acoustic technique


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pulsed electric acoustic technique, PEA, has been usually applied to probe space charge profiles in polymers. Preliminary PEA results using a ferroelectric ceramic are presented. If the reverse applied electric field i of the order of the coercive field the switching polarization process occurs in a period larger than hundreds of seconds. Such a slow process allows one to use the PEA setup to follow the polarization switching dynamics and determine the electric field profile. The PEA signal obtained in the lead zirconate-titanate doped with niobium ceramic, PZTN, indicates that the polarization distribution and field are not uniform during the switching period. We were also able to observe that the acoustic wave velocity and attenuation depends on the stage of the polarization switching, which agrees with results obtained using the ultrasonic method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pulsed electric acoustic technique, PEA, have been usually applied to probe space charge profiles in polymers. In this work we show preliminary results obtained with lead zirconate-titanate and niobium, PZTN, ferroelectric ceramic samples. Experiments showed that induced charge densities on sample electrodes are mainly due to the ferroelectric polarization of the sample. We present results of the typical PEA response and the procedure to deconvolute the signal in order to obtain the charge densities and the electric field profiles. The PEA setup allows us to show a non-uniform polarization during ferroelectric switching.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of monopolar and bipolar shaped pulses in additional yield of apple juice extraction is evaluated. The applied electric field strength, pulsewidth, and number of pulses are assessed for both pulse types, and divergences are analyzed. Variation of electric field strength is ranged from 100 to 1300 V/cm, pulsewidth from 20 to 300 mu s, and the number of pulses from 10 to 200, at a frequency of 200 Hz. Two pulse trains separated by 1 s are applied to apple cubes. Results are plotted against reference untreated samples for all assays. Specific energy consumption is calculated for each experiment as well as qualitative indicators for apple juice of total soluble dry matter and absorbance at 390-nm wavelength. Bipolar pulses demonstrated higher efficiency, and specific energetic consumption has a threshold where higher inputs of energy do not result in higher juice extraction when electric field variation is applied. Total soluble dry matter and absorbance results do not illustrate significant differences between application of monopolar and bipolar pulses, but all values are inside the limits proposed for apple juice intended for human consumption.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Additional apple juice extraction with pulsed electric field pretreated apple cubes towards control samples is evaluated. Monopolar and bipolar shaped pulses are compared and their effect is studied with variation of electric field, pulse width and number of pulses. Variation of electric field strength is ranged from 100 V/cm to 1300 V/cm, pulse width from 20 mu s to 300 mu s and number of pulses from 10 to 200, at frequency of 200Hz. Two pulse trains separated by 1 second are applied to all samples. Bipolar pulses showed higher apple juice yields with all studied parameters. Calculation of specific energies consumed was assessed and a threshold where higher energy inputs do not increase juice yield is found for a number of used parameters. Qualitative parameters of total soluble matter (Brix) and absorbance at 390 nm wavelength were determined for each sample and results show that no substantial differences are found for PEF pre-treated and control samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work describes the utilization of Pulsed Electric Fields to control the protozoan contamination of a microalgae culture, in an industrial 2.7m3 microalgae photobioreactor. The contaminated culture was treated with Pulsed Electric Fields, PEF, for 6h with an average of 900V/cm, 65μs pulses of 50Hz. Working with recirculation, all the culture was uniformly exposed to the PEF throughout the assay. The development of the microalgae and protozoan populations was followed and the results showed that PEF is effective on the selective elimination of protozoa from microalgae cultures, inflicting on the protozoa growth halt, death or cell rupture, without affecting microalgae productivity. Specifically, the results show a reduction of the active protozoan population of 87% after 6h treatment and 100% after few days of normal cultivation regime. At the same time, microalgae growth rate remained unaffected. © 2014 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this thesis was to study the effect of pulsed electric field on the preparation of TiO2 nanoparticles via sol-gel method. The literature part deals with properties of different TiO2 crystal forms, principles of photocatalysis, sol-gel method and pulsed electric field processing. It was expected that the pulsed electric field would have an influence on crystallite size, specific surface area, polymorphism and photocatalytic activity of produced particles. TiO2 samples were prepared by using different frequencies and treatment times of pulsed electric field. The properties of produced TiO2 particles were examined X-ray diffraction (XRD), Raman spectroscopy and BET surface area analysis. The photocatalytic activities of produced TiO2 particles were determined by using them as photocatalysts for the degradation of formic acid under UVA-light. The photocatalytic activities of samples produced with sol-gel method were also compared with the commercial TiO2 powder Aeroxide® (Evonic Degussa GmbH). Pulsed electric field did not have an effect on the morphology of particles. Results from XRD and Raman analysis showed that all produced TiO2 samples were pure anatase. However, pulsed electric field did have an effect on crystallite size, specific surface area and photocatalytic activity of TiO2 particles. Generally, the crystallite sizes were smaller, specific surface areas larger and initial formic acid degradation rates higher for samples that were produced by applying the pulsed electric field. The higher photocatalytic activities were attributed to larger surface areas and smaller crystallite sizes. Though, with all of the TiO2 samples produced by the sol-gel method the initial formic acid degradation rates were significantly slower than with the commercial TiO2 powder.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growing pharmaceutical interest, among others, in the polymorphic composition of the emerging solid end-products from production processes has been traced to the need for attainment of high product purity. This is more so as the presence of different polymorphs may constitute physical impurity of the product. Hence, the need for optimization of the yield of desired product component(s) through controlled crystallization kinetics for instance. This study was carried out to investigate the impact of pulsed electric field (PEF) irradiation on the crystal morphology of glycine obtained by cooling crystallization (without seeding) from commercial glycine sample in distilled deionized water solution. In doing so, three different pulse frequencies (294, 950 and 145 Hz) and a case without PEF were studied at three cooling rates (5, 10 and 20 ºC/h). The crystal products obtained were analyzed for polymorphic composition by powder x-ray diffraction (PXRD) and Fourier transform infrared (FTIR) spectroscopy while the particles characterization was done on Morphologi G3. The results obtained from this study showed that pulsed electric field irradiation had significant impact on metastability of the aqueous solution as well as on the polymorphic composition of the end product. With increasing PEF frequency applied, nucleation started earlier and the γ-glycine polymorph content of the product crystals increased. These were found to have been aided by cooling rate, as the most significant effect was observed at 5 ºC/h. It was also discovered that PEF application had no measurable impact on the pH of the aqueous solution as well as the size distribution of the particles. Cooling on the contrary was believed to be responsible for the broadening of the particle size distribution with a downward shift of the lower limit of the raw material from about 100 μm to between 10 and 50 μm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this thesis was to study the effect of pulsed electric field on the preparation of TiO2 nanoparticles via sol-gel method under the visible light irradiation. The literature part introduces properties of different TiO2 crystal forms and principle of photocatalysis. It was expected that pulsed electric field would have an influence on degradation for oxalic acid and formic acid. TiO2 samples were prepared by using three frequencies (50Hz, 294Hz, and 963Hz) and two treatment times (12 minutes and 24 minutes) of pulsed electric field. The photocatalytic activities of TiO2 samples produced with sol-gel method were also compared with the TiO2 particles made by previous study and with the commercial TiO2 powder Aeroxide® (Evonic Degussa GmbH) at the same condition. Results show that pulsed electric field does have an effect on degradation for oxalic acid and formic acid. Generally, higher photocatalytic activities for oxalic acid and formic acid were obtained with lower frequency and longer treatment time of pulsed electric field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A pulsed Nd-YAG laser beam is used to produce a transient refractive index gradient in air adjoining the plane surface of the sample material. This refractive index gradient is probed by a continuous He-Ne laser beam propagating parallel to the sample surface. The observed deflection signals produced by the probe beam exhibit drastic variations when the pump laser energy density crosses the damage threshold for the sample. The measurements are used to estimate the damage threshold for a few polymer samples. The present values are found to be in good agreement with those determined by other methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laser‐induced damage and ablation thresholds of bulk superconducting samples of Bi2(SrCa)xCu3Oy(x=2, 2.2, 2.6, 2.8, 3) and Bi1.6 (Pb)xSr2Ca2Cu3 Oy (x=0, 0.1, 0.2, 0.3, 0.4) for irradiation with a 1.06 μm beam from a Nd‐YAG laser have been determined as a function of x by the pulsed photothermal deflection technique. The threshold values of power density for ablation as well as damage are found to increase with increasing values of x in both systems while in the Pb‐doped system the threshold values decrease above a specific value of x, coinciding with the point at which the Tc also begins to fall.  

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dual beam transient thermal lens studies were carried out in rhodamine 6G methanol solutions using 532 nm pulses from a frequency doubled Nd:YAG laser. Analysis of thermal lens signal shows the existence of different nonlinear processes like two photon absorption and three photon absorption phenomena along with one photon absorption. Concentration of the dye in the solution has been found to influence the occurrence of the different processes in a significant way.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photothermal deflection technique was used for determining the laser damage threshold of polymer samples of teflon (PTFE) and nylon. The experiment was conducted using a Q-switched Nd-YAG laser operating at its fundamental wavelength (1-06μm, pulse width 10 nS FWHM) as irradiation source and a He-Ne laser as the probe beam, along with a position sensitive detector. The damage threshold values determined by photothermal deflection method were in good agreement with those determined by other methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pulsed electric field technology is one of the most attractive new non-thermal technology thanks to its lower energy consumption and short treatment times. It consists of an electric treatment of short duration (from several ns to several ms) with electric field strengths from 0.1 to 80 kV/cm that lead to an increase in the permeability of the cell membrane. In this PhD thesis, PEF technology was investigated with the aim of improving mass transfer in plant and animal foods by using it alone or in combination with conventional food processes. Different methods of evaluating electroporation for optimizing PEF processing parameters were investigated. In this respect, the degree of membrane permeabilization in plant and animal food matrices was investigated using electrical impedance spectroscopy, current-voltage measurements and magnetic resonance imaging. The research findings provided useful insights and calls for critical choice of electroporation assessment methods for the selection of adequate PEF treatment conditions. It was outlined that the effect of electroporation is highly dependent on the properties of the food matrix and secondary phenomena occurring in the cell structure undergoing PEF treatment, such as the water re-distribution in the tissue due to the exchange of fluids between intra- and extra-cellular environments. This study also confirmed the great potential of combining PEF technology with conventional food processes, with the main purpose of improving the quality of the food material and accelerating the kinetics of mass transfers, in both plant and animal tissues. Consistent reduction of acrylamide formation in potato crisps was achieved by monitoring key PEF process parameters and subsequent manufacturing steps. Kiwifruit snacks showed a significant reduction in drying kinetics when pre-treated with PEF, while their quality was well maintained. Finally, the research results showed that PEF pre-treatments can shorten the brine process as well as the rehydration kinetics of fish muscles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il progetto di questa tesi ha l’obiettivo di analizzare l’effetto dei Campi Elettrici Pulsati (PEF) sulla qualità delle foglie di basilico tailandese, essiccate sottovuoto. Nell’esperimento sono stati utilizzati i Campi Elettrici Pulsati a elettroporazione reversibile, come pretrattamento di essiccazione, e si è visto come questi influenzino la durata del trattamento di essiccazione. Dai risultati si può notare che essi riducono il tempo di processo in campioni sottoposti a 20°C, ma all’aumentare della temperatura tale effetto sembra essere meno significativo, come si può osservare già a 40°C. Una volta che le foglie sono state esposte ai Campi Elettrici Pulsati, vengono lasciate a riposo per 24 ore in un ambiente umido a temperatura ambiente prima di essere essiccate, per raggiungere buoni risultati qualitativi. I campioni, così analizzati, hanno una buona capacità di reidratazione, una bassa conduttività durante il processo di reidratazione e preservano meglio il colore durante l’esperimento, rispetto alle foglie che non sono state sottoposte ai Campi Elettrici Pulsati, né alle successive 24 ore di riposo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work describes the performance of AlN-based bulk acoustic wave resonators built on top of insulating acoustic reflectors and operating at around 8 GHz. The acoustic reflectors are composed of alternate layers of amorphous Ta2O5and SiO2 deposited at room temperature by pulsed-DC reactive sputtering in Ar/O2 atmospheres. SiO2 layers have a porous structure that provides a low acoustic impedance of only 9.5 MRayl. Ta2O5 films exhibit an acoustic impedance of around 39.5 MRayl that was assessed by the picoseconds acoustic technique These values allow to design acoustic mirrors with transmission coefficients in the centre of the band lower than -40 dB (99.998 % of reflectance) with only seven layers. The resonators were fabricated by depositing a very thin AlN film onto an iridium bottom electrode 180 nm-thick and by using Ir or Mo layers as top electrode. Resonators with effective electromechanical coupling factors of 5.7% and quality factors at the antiresonant frequency around 600 are achieved.