948 resultados para Probabilistic renewable power forecast
Resumo:
In this work is discussed the importance of the renewable production forecast in an island environment. A probabilistic forecast based on kernel density estimators is proposed. The aggregation of these forecasts, allows the determination of thermal generation amount needed to schedule and operating a power grid of an island with high penetration of renewable generation. A case study based on electric system of S. Miguel Island is presented. The results show that the forecast techniques are an imperative tool help the grid management.
Resumo:
Dissertação de Mestrado, Engenharia Eletrónica e Telecomunicações, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2016
Resumo:
Of all of the sources of renewable energies available one can argue that the most abundant and accessible are solar power, radiation, and the energy of the tides (70 % of the earth surface is covered by water). The tidal wave energy hasn’t seen a widespread distribution yet, mainly due to the lack of interest of the governments, most of the coastal areas of the world are exclusive responsibility of the governments, thus not easily open for private venture. Considering solar power, there exist two main fields of application, land based systems and space based systems. The former systems are still in a very embryonic phase, with Japan being the lead researcher in the field, with an experimental satellite-power station to be launched before 2010. Land based systems, on the other hand, are well studied, with major research and application programs in all known forms of solar power production. Given a minimum value of incident radiation, and applying the appropriate system, (i.e. power plant type), for any given area the solar power becomes an income-producing industry.
Resumo:
UK wind-power capacity is increasing and new transmission links are proposed with Norway, where hydropower dominates the electricity mix. Weather affects both these renewable resources and the demand for electricity. The dominant large-scale pattern of Euro-Atlantic atmospheric variability is the North Atlantic Oscillation (NAO), associated with positive correlations in wind, temperature and precipitation over northern Europe. The NAO's effect on wind-power and demand in the UK and Norway is examined, focussing on March when Norwegian hydropower reserves are low and the combined power system might be most susceptible to atmospheric variations. The NCEP/NCAR meteorological reanalysis dataset (1948–2010) is used to drive simple models for demand and wind-power, and ‘demand-net-wind’ (DNW) is estimated for positive, neutral and negative NAO states. Cold, calm conditions in NAO− cause increased demand and decreased wind-power compared to other NAO states. Under a 2020 wind-power capacity scenario, the increase in DNW in NAO− relative to NAO neutral is equivalent to nearly 25% of the present-day average rate of March Norwegian hydropower usage. As the NAO varies on long timescales (months to decades), and there is potentially some skill in monthly predictions, we argue that it is important to understand its impact on European power systems.
Resumo:
India is increasingly investing in renewable technology to meet rising energy demands, with hydropower and other renewables comprising one-third of current installed capacity. Installed wind-power is projected to increase 5-fold by 2035 (to nearly 100GW) under the International Energy Agency’s New Policies scenario. However, renewable electricity generation is dependent upon the prevailing meteorology, which is strongly influenced by monsoon variability. Prosperity and widespread electrification are increasing the demand for air conditioning, especially during the warm summer. This study uses multi-decadal observations and meteorological reanalysis data to assess the impact of intraseasonal monsoon variability on the balance of electricity supply from wind-power and temperature-related demand in India. Active monsoon phases are characterised by vigorous convection and heavy rainfall over central India. This results in lower temperatures giving lower cooling energy demand, while strong westerly winds yield high wind-power output. In contrast, monsoon breaks are characterised by suppressed precipitation, with higher temperatures and hence greater demand for cooling, and lower wind-power output across much of India. The opposing relationship between wind-power supply and cooling demand during active phases (low demand, high supply) and breaks (high demand, low supply) suggests that monsoon variability will tend to exacerbate fluctuations in the so-called demand-net-wind (i.e., electrical demand that must be supplied from non-wind sources). This study may have important implications for the design of power systems and for investment decisions in conventional schedulable generation facilities (such as coal and gas) that are used to maintain the supply/demand balance. In particular, if it is assumed (as is common) that the generated wind-power operates as a price-taker (i.e., wind farm operators always wish to sell their power, irrespective of price) then investors in conventional facilities will face additional weather-volatility through the monsoonal impact on the length and frequency of production periods (i.e. their load-duration curves).
Resumo:
Forecasting wind power is an important part of a successful integration of wind power into the power grid. Forecasts with lead times longer than 6 h are generally made by using statistical methods to post-process forecasts from numerical weather prediction systems. Two major problems that complicate this approach are the non-linear relationship between wind speed and power production and the limited range of power production between zero and nominal power of the turbine. In practice, these problems are often tackled by using non-linear non-parametric regression models. However, such an approach ignores valuable and readily available information: the power curve of the turbine's manufacturer. Much of the non-linearity can be directly accounted for by transforming the observed power production into wind speed via the inverse power curve so that simpler linear regression models can be used. Furthermore, the fact that the transformed power production has a limited range can be taken care of by employing censored regression models. In this study, we evaluate quantile forecasts from a range of methods: (i) using parametric and non-parametric models, (ii) with and without the proposed inverse power curve transformation and (iii) with and without censoring. The results show that with our inverse (power-to-wind) transformation, simpler linear regression models with censoring perform equally or better than non-linear models with or without the frequently used wind-to-power transformation.
Resumo:
Conferências internacionais sobre o clima, bem como crescente conscientização sobre as questões de sustentabilidade lançaram luz sobre o papel fundamental que as energias renováveis poderiam desempenhar na transição energética. Ao contrário de combustíveis fósseis, elas podem ser regeneradas em um curto período de tempo e, por conseguinte, espera-se que sejam uma parte da solução para reduzir o aquecimento global. O Brasil sempre teve um forte setor hidrelétrico, mas agora está na vanguarda em relação a todas as outras fontes de energias alternativas, como energia eólica, biomassa o energia solar. Estas indústrias são uma promessa para um futuro próspero, graças ao potencial natural do país, bem como uma legislação de apoio, e estão atraindo muitas empresas locais e internacionais. Este estudo tem como objetivo preencher uma lacuna na literatura analisando o exemplo de uma empresa estrangeira que entra no mercado da energia renovável no Brasil. Baseando-se na literatura como um fundo conceptual, um único estudo de caso têm sido realizados para delinear todos os aspectos do processo de entrada. Neste desenvolvimento, relações causais entre as orientações estratégicas e a evolução do negócio foram identificadas. Esta pesquisa traz uma contribuição para as discussões acadêmicas sobre as dinâmicas de entrada no setor de energia renovável através de evidências do mercado brasileiro.
Resumo:
Forecasting the AC power output of a PV plant accurately is important both for plant owners and electric system operators. Two main categories of PV modeling are available: the parametric and the nonparametric. In this paper, a methodology using a nonparametric PV model is proposed, using as inputs several forecasts of meteorological variables from a Numerical Weather Forecast model, and actual AC power measurements of PV plants. The methodology was built upon the R environment and uses Quantile Regression Forests as machine learning tool to forecast AC power with a confidence interval. Real data from five PV plants was used to validate the methodology, and results show that daily production is predicted with an absolute cvMBE lower than 1.3%.
Resumo:
[EN]In this paper an architecture for an estimator of short-term wind farm power is proposed. The estimator is made up of a Linear Machine classifier and a set of k Multilayer Perceptrons, training each one for a specific subspace of the input space. The splitting of the input dataset into the k clusters is done using a k-means technique, obtaining the equivalent Linear Machine classifier from the cluster centroids...
Resumo:
Due to the global crisis o f climate change many countries throughout the world are installing the renewable energy o f wind power into their electricity system. Wind energy causes complications when it is being integrated into the electricity system due its intermittent nature. Additionally winds intennittency can result in penalties being enforced due to the deregulation in the electricity market. Wind power forecasting can play a pivotal role to ease the integration o f wind energy. Wind power forecasts at 24 and 48 hours ahead of time are deemed the most crucial for determining an appropriate balance on the power system. In the electricity market wind power forecasts can also assist market participants in terms o f applying a suitable bidding strategy, unit commitment or have an impact on the value o f the spot price. For these reasons this study investigates the importance o f wind power forecasts for such players as the Transmission System Operators (TSOs) and Independent Power Producers (IPPs). Investigation in this study is also conducted into the impacts that wind power forecasts can have on the electricity market in relation to bidding strategies, spot price and unit commitment by examining various case studies. The results o f these case studies portray a clear and insightful indication o f the significance o f availing from the information available from wind power forecasts. The accuracy o f a particular wind power forecast is also explored. Data from a wind power forecast is examined in the circumstances o f both 24 and 48 hour forecasts. The accuracy o f the wind power forecasts are displayed through a variety o f statistical approaches. The results o f the investigation can assist market participants taking part in the electricity pool and also provides a platform that can be applied to any forecast when attempting to define its accuracy. This study contributes significantly to the knowledge in the area o f wind power forecasts by explaining the importance o f wind power forecasting within the energy sector. It innovativeness and uniqueness lies in determining the accuracy o f a particular wind power forecast that was previously unknown.
Resumo:
The energy reform, which is happening all over the world, is caused by the common concern of the future of the humankind in our shared planet. In order to keep the effects of the global warming inside of a certain limit, the use of fossil fuels must be reduced. The marginal costs of the renewable sources, RES are quite high, since they are new technology. In order to induce the implementation of RES to the power grid and lower the marginal costs, subsidies were developed in order to make the use of RES more profitable. From the RES perspective the current market is developed to favor conventional generation, which mainly uses fossil fuels. Intermittent generation, like wind power, is penalized in the electricity market since it is intermittent and thus diffi-cult to control. Therefore, the need of regulation and thus the regulation costs to the producer differ, depending on what kind of generation market participant owns. In this thesis it is studied if there is a way for market participant, who has wind power to use the special characteristics of electricity market Nord Pool and thus reach the gap between conventional generation and the intermittent generation only by placing bids to the market. Thus, an optimal bid is introduced, which purpose is to minimize the regulation costs and thus lower the marginal costs of wind power. In order to make real life simulations in Nord Pool, a wind power forecast model was created. The simulations were done in years 2009 and 2010 by using a real wind power data provided by Hyötytuuli, market data from Nord Pool and wind forecast data provided by Finnish Meteorological Institute. The optimal bid needs probability intervals and therefore the methodology to create probability distributions is introduced in this thesis. In the end of the thesis it is shown that the optimal bidding improves the position of wind power producer in the electricity market.
Singular value analyses of voltage stability on power system considering wind generation variability
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
A tanulmány arra keresi a választ, hogy a megújuló alapú áramtermelők támogatása csökkentőleg hathat- e a villamos energia nagykereskedelmi és kiskereskedelmi árára. Ez utóbbi tartalmazza a megújulók támogatásának összegét is. Számos elméleti cikk rámutatott arra, hogy nemcsak a nagykereskedelmi árak, hanem a kiskereskedelmi villamosenergia-árak is csökkenhetnek a drágább, megújuló alapú áramtermelők támogatása révén. A tanulmány során egy villamosenergia-piacokat szimuláló modell segítségével modellezi a szerző, hogy a különböző mennyiségű szélerőművi és fotovoltaikus kapacitás támogatása hogyan hat a magyarországi nagykereskedelmi és kiskereskedelmi árakra. _____ Impact of the Hungarian renewable based power generation on electricity price The aim of this paper is to answer the question whether the support of renewable power generation could decrease the wholesale and retail electricity prices. The latter one includes the support of renewables. Several studies point out that not only the wholesale, but the retail electricity prices could decrease when supporting the more expensive, renewable power generation. A model, which simulates the electricity markets, is used in order to analyse the impact of different level of wind and photo voltaic power generator support fee on Hungarian wholesale and retail electricity prices.
Resumo:
High efficiency of power converters placed between renewable energy sources and the utility grid is required to maximize the utilization of these sources. Power quality is another aspect that requires large passive elements (inductors, capacitors) to be placed between these sources and the grid. The main objective is to develop higher-level high frequency-based power converter system (HFPCS) that optimizes the use of hybrid renewable power injected into the power grid. The HFPCS provides high efficiency, reduced size of passive components, higher levels of power density realization, lower harmonic distortion, higher reliability, and lower cost. The dynamic modeling for each part in this system is developed, simulated and tested. The steady-state performance of the grid-connected hybrid power system with battery storage is analyzed. Various types of simulations were performed and a number of algorithms were developed and tested to verify the effectiveness of the power conversion topologies. A modified hysteresis-control strategy for the rectifier and the battery charging/discharging system was developed and implemented. A voltage oriented control (VOC) scheme was developed to control the energy injected into the grid. The developed HFPCS was compared experimentally with other currently available power converters. The developed HFPCS was employed inside a microgrid system infrastructure, connecting it to the power grid to verify its power transfer capabilities and grid connectivity. Grid connectivity tests verified these power transfer capabilities of the developed converter in addition to its ability of serving the load in a shared manner. In order to investigate the performance of the developed system, an experimental setup for the HF-based hybrid generation system was constructed. We designed a board containing a digital signal processor chip on which the developed control system was embedded. The board was fabricated and experimentally tested. The system's high precision requirements were verified. Each component of the system was built and tested separately, and then the whole system was connected and tested. The simulation and experimental results confirm the effectiveness of the developed converter system for grid-connected hybrid renewable energy systems as well as for hybrid electric vehicles and other industrial applications.