Short-term wind power forecast based on cluster analysis and artificial neural networks


Autoria(s): Lorenzo Navarro, José Javier; Méndez Rodríguez, Juan Ángel; Castrillón-Santana, Modesto; Hernández Sosa, José Daniel
Data(s)

18/07/2016

18/07/2016

2011

Resumo

<p>[EN]In this paper an architecture for an estimator of short-term wind farm power is proposed. The estimator is made up of a Linear Machine classifier and a set of k Multilayer Perceptrons, training each one for a specific subspace of the input space. The splitting of the input dataset into the k clusters is done using a k-means technique, obtaining the equivalent Linear Machine classifier from the cluster centroids...</p>

Identificador

http://hdl.handle.net/10553/17887

728068

<p><a href="http://dx.doi.org/10.1007/978-3-642-21501-8_24" target="_blank">10.1007/978-3-642-21501-8_24</a></p>

Idioma(s)

eng

Direitos

info:eu-repo/semantics/openAccess

Fonte

<p>Advances in Computational Intelligence. Berlin: Springer, 2011 (Lecture Notes in Computer Science, ISSN 0302-9743; vol. 6691; pp 191-198). ISBN 978-3-642-21500-1. ISBN on-line 978-3-642-21501-8</p>

Palavras-Chave #120304 Inteligencia artificial
Tipo

info:eu-repo/semantics/conferenceObject